Hostname: page-component-68945f75b7-jkr4m Total loading time: 0 Render date: 2024-09-02T21:59:16.953Z Has data issue: false hasContentIssue false

Modeling of Failure in Metallic Thin Films Induced by Stress and Electromigration: A Multiscale Computational Analysis

Published online by Cambridge University Press:  10 February 2011

M. R. Gungor
Affiliation:
Department of Chemical Engineering, University of California, Santa Barbara, CA 93106
L. J. Gray
Affiliation:
Computer Sciences & Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
S. J. Zhou
Affiliation:
Applied Theoretical and Computational Physics Division, Los Alamos National Laboratory, Los Alamos, NM 87545
D. Maroudas
Affiliation:
Department of Chemical Engineering, University of California, Santa Barbara, CA 93106
Get access

Abstract

A common failure mechanism in metallic thin-film interconnects is void propagation driven by electric fields and thermomechanical stresses. In this paper, a multiscale computational analysis is presented for predictive modeling of transgranular void dynamics. The modeling approach is hierarchical and involves atomistic simulations for property database development, molecular-dynamics simulations for understanding of void-tip mechanisms, and self-consistent mesoscopic simulations based on boundary-element methods and techniques for moving boundary propagation. An extremely rich void dynamical behavior is predicted, which includes faceting, facet selection, propagation of slits from the void surface, as well as formation of fine-scale crack-like features on the void surface, in agreement with recent experimental data.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ho, P. S. and Kwok, T., Rep. Progr. Phys. 52, 301 (1989); C. V. Thompson and J. R. Lloyd, MRS Bulletin 18, No. 12, 19 (1993), and references therein.Google Scholar
2.see, e.g., Sauter, A. I. and Nix, W. D., J. Mater. Res. 7, 1133 (1992).Google Scholar
3. Sanchez, J. E. Jr, McKnelly, L. T., and Morris, J. W. Jr, J. Electron. Mater. 19, 1213 (1990); J. Appl. Phys. 72, 3201 (1992); J. H. Rose, Appl. Phys. Lett. 61, 2170 (1992); 0. Kraft, S. Bader, J. E. Sanchez, Jr., and E. Arzt, Mater. Res. Soc. Symp. Proc. 309, 199 (1993); E. Arzt, O. Kraft, W. D. Nix, and J. E. Sanchez, Jr., J. Appl. Phys. 76, 1563 (1994).Google Scholar
4. Joo, Y.-C. and Thompson, C. V., J. Appl. Phys. 81, 6062 (1997).Google Scholar
5. Suo, Z., Wang, W., and Yang, M., Appl. Phys. Lett. 64, 1944 (1994); W.Q. Wang, Z. Suo, and T.-H. Hao, J. Appl. Phys. 79, 2394 (1996).Google Scholar
6. Kraft, O. and Arzt, E., Appl. Phys. Lett. 66, 2063 (1995); Acta Mater. 45, 1599 (1997).Google Scholar
7. Maroudas, D., Appl. Phys. Lett. 67, 798 (1995); D. Maroudas, M. N. Enmark, C. M. Leibig, and S. T. Pantelides, J. Comp.-Aided Mater. Des. 2, 231 (1995).Google Scholar
8. Xia, L., Bower, A. F., Suo, Z., and Shih, C. F., J. Mech. Phys. Solids 45, 1473 (1997).Google Scholar
9. Schimschak, M. and Krug, J., Phys. Rev. Lett. 80, 1674 (1998).Google Scholar
10. Gungor, M. R. and Maroudas, D., Appl. Phys. Lett. 72, 3452 (1998); Surf. Sci. 418, L1055 (1998); J. Appl. Phys., in press.Google Scholar
11.see, e.g., Yang, W. H. and Srolovitz, D. J., Phys. Rev. Lett. 71, 1593 (1993).Google Scholar
12. Gray, L. J., Maroudas, D., and Enmark, M. N., Comp. Mech. 22, 187 (1998).Google Scholar
13. Foiles, S. M., Baskes, M. I., and Daw, M. S., Phys. Rev. B 33, 7983 (1986).Google Scholar
14. Liu, C.-L., Cohen, J. M., Adams, J. B., and Voter, A. F., Surf. Sci. 253, 334 (1991).Google Scholar