Hostname: page-component-5c6d5d7d68-xq9c7 Total loading time: 0 Render date: 2024-08-21T16:02:09.805Z Has data issue: false hasContentIssue false

A Model of the Gas-Phase Chemistry of Boron Nitride CVD From BCl3 and NH 3*

Published online by Cambridge University Press:  10 February 2011

Mark D. Allendorf
Affiliation:
Sandia National Laboratories Livermore, CA 94551-0969
Carl F. Melius
Affiliation:
Sandia National Laboratories Livermore, CA 94551-0969
Thomas H. Osterheld
Affiliation:
Sandia National Laboratories Livermore, CA 94551-0969
Get access

Abstract

The kinetics of gas-phase reactions occurring during the CVD of boron nitride (BN) from BCl3 and NH3 are investigated using an elementary reaction mechanism whose rate constants were obtained from theoretical predictions and literature sources. Plug-flow calculations using this mechanism predict that unimolecular decomposition of BCl3 is not significant under typical CVD conditions, but that some NH3 decomposition may occur, especially for deposition occurring at atmospheric pressure. Reaction of BCl3 with NH3 is rapid under CVD conditions and yields species containing both boron and nitrogen. One of these compounds, Cl2BNH2, is predicted to be a key gas-phase precursor to BN.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lee, W. Y., Lackey, W. J., Agrawal, P. K., J. Am. Ceram. Soc. 74, 2642 (1991).Google Scholar
2. Patibandla, N., Luthra, K. L., J. Electrochem. Soc. 12, 3558 (1992).Google Scholar
3. Pavlovic, V., Kötter, H., Meixner, C., J. Mater. Res. 6, 2393 (1991).Google Scholar
4. Matsuda, T., Nakae, H., Hirai, T., J. Mater. Sci. 23, 509 (1988).Google Scholar
5. Tanji, H., Monden, K., Ide, M., Eds., 10th Int. Conf. CVD (The Electrochemical Society, 1987), vol.87–8, pp. 562.Google Scholar
6. Fareed, A. S., Schiroky, G. H., Kennedy, C. R., Ceramic Eng. Sci. Proc. 14, 794 (1993).Google Scholar
7. Kwon, C. T., McGee, H. A. Jr., Inorg. Chem. 12, 696 (1973).Google Scholar
8. Kapralova, G. A., Suchkova, T. V., Chaikin, A. M., Mendeleev Commun. 3, 118 (1993).Google Scholar
9. Allendorf, M. D., Melius, C. F., unpublished data.Google Scholar
10. Branchadell, V., Sbai, A., Oliva, A., J. Phys. Chem. 99, 6472 (1995).Google Scholar
11. Miller, J. A., Bowman, C. T., Prog. Energy Combust. Sci. 15, 287 (1989).Google Scholar
12. Warnatz, J., in Combustion Chemistry, Gardiner, W. C. Jr., Ed. (Springer-Verlag, New York, 1984).Google Scholar
13. Baulch, D. L., Duxbury, J., Grant, S. J., Montague, D. C., J. Phys. Chem. Ref. Data 10, Suppl. 1, (1981).Google Scholar
14. Gilbert, R. G., Smith, S. C., Theory of Unimolecular and Recombination Reactions. (Blackwell Scientific Publications, Oxford, 1990).Google Scholar
15. Lutz, A. E., Kee, R. J., Miller, J. A., “SENKIN: A Fortran Program for Predicting Homogeneous Gas Phase Chemical Kinetics,” Sandia National Laboratories Report, SAND87-8248, 1988.Google Scholar
16. Slavejkov, A. G., Fontijn, A., Chem. Phys. Lett. 165, 375 (1990).Google Scholar