Article contents
Micromechanical Characterization of Dielectric Thin Films
Published online by Cambridge University Press: 15 February 2011
Abstract
A nanoindenter has been used to obtain Young's modulus and hardness data for a variety of dielectric thin films including silicon carbide, boron nitride, silicon carbonitride, and silicon oxide. These films, were synthesized by low pressure and plasma enhanced chemical vapor deposition, and had a thickness from 0.25 to a few microns. For the BN films, the modulus and hardness of the films decreased significantly as the deposition temperature increased while the reverse was true for the SiC films. In both cases, these changes were related to variations in the compositions of the deposits due to the onset of different reactions as the temperature is increased. Silicon carbonitride films oxidized slowly when synthesized at temperatures below 200º C and the Young's modulus of these films increased at higher deposition temperatures. For silicon dioxide, there was little change in the composition of the films over the deposition temperature range investigated (375–475º C), thus correspondingly, small variations in the micromechanical properties of the material. However, moisture and hydrogen removal caused by an anneal at 800º C resulted in an significant increase in the modulus and hardness of these films.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1993
References
REFERENCES
- 3
- Cited by