Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T18:35:10.565Z Has data issue: false hasContentIssue false

Low temperature Si0.85 Ge0.15 oxynitridation in wet-nitric oxide ambient

Published online by Cambridge University Press:  01 February 2011

Anindya Dasgupta
Affiliation:
Department of Chemical Engineering, University of Illinois at Chicago, 810 South Clinton Street, Chicago, Illinois 60607.
Christos G. Takoudis
Affiliation:
Department of Chemical Engineering, University of Illinois at Chicago, 810 South Clinton Street, Chicago, Illinois 60607.
Get access

Abstract

Nitric oxide (NO) aided Si0.85Ge0.15 wet-oxynitridation has been performed at 400 700°C, while the wet-NO feed gas was preheated to higher temperatures before entering the reaction zone. X-Ray photoelectron spectroscopy (XPS) and secondary ion mass spectroscopy (SIMS) data suggests that both nitrogen and oxygen incorporation increases within the dielectric bulk with increasing wet-oxynitridation temperature, while there is no apparent germanium segregation towards the dielectric/substrate interface at all temperatures studied. Angle-resolved XPS analysis shows that increase in wetoxynitridation temperature above 600°C is likely to volatilize some germanium oxide from the surface region. Nitrogen incorporation is found to hinder germanium segregation. These results are discussed in the context of an overall mechanism of SiGe wet-oxynitridation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Madsen, J. M., Cui, Z. and Takoudis, C. G., J. Appl. Phys. 87 (2000), 2046 Google Scholar
2 König, U. and Hersener, J., Solid State Phenom. 47-48 (1996), 17 Google Scholar
3 Nayak, D., Kamjoo, K., Park, J. S., Woo, J. C. C. and Wang, K. L., IEEE Trans. Electron Devices 39 (1992), 56 Google Scholar
4 Nayak, D., Kamjoo, K., Park, J. S., Woo, J.C. C. and Wang, K. L., Appl. Phys. Lett. 66 (1998), 56 Google Scholar
5 LeGoues, F.K., Rosenberg, R. and Meyerson, B.S. Appl. Phys. Lett. 54 (1989), 644 Google Scholar
6 Holland, O.W., White, C.W. and Fathy, D. Appl. Phys. Lett. 51 (1987), 520 Google Scholar
7 Fathy, D., Holland, O.W. and White, C.W. Appl. Phys. Lett. 51 (1987), 1337 Google Scholar
8 Patton, G. L., Iyer, S.S., Delage, S.L., Ganin, E. and McIntosh, R.C. In: Mater Res. Soc. Symp. Proc. 102 (1988), 295 Google Scholar
9 LeGoues, F.K., Rosenberg, R., Nguyen, T., Himpsel, F. and Meyerson, B.S. J. Appl. Phys. 65 (1989), 1724 Google Scholar
10 Nayak, D.K., Kamijoo, K., Park, J.S., Woo, J.C.S. and Wang, K.L. Appl. Phys. Lett. 57 (1990), 369 Google Scholar
11 Eugene, J., LeGoues, F.K., Kesan, V.P., Lyer, S.S. and d'Heurle, F.M. Appl. Phys. Lett. 59 (1991), 78 Google Scholar
12 Nayak, D., Kamijoo, K., Woo, J.C.S., Park, J.S. and Wang, K.L. Appl. Phys. Lett. 56 (1990), 66 Google Scholar
13 Liou, H. K., Mei, P., Gennser, U. and Yang, E.S. Appl. Phys. Lett. 59 (1991), 1200 Google Scholar
14 Dang, S. S. and Takoudis, C. G., J. Appl. Phys. 86 (1999), 1326 Google Scholar
15 Dasgupta, A. and Takoudis, C.G., J. Appl Phys., July (2003) (in press)Google Scholar
16 Goswami, R., Butcher, J. B., Ginige, R., Zhang, J. F., Taylor, S., and Eccleston, W., Electron Lett. 24 (1988), 1269 Google Scholar
17 Kennedy, G. P., Taylor, S., Eccleston, W., Arnoldbik, W. M., and Habracken, F. H. P. M., Microelectron Eng. 28 (1995), 141 Google Scholar
18 Prabhakaran, K. and Ogino, T., Surface Science, L1068 (1997)Google Scholar
19 Riley, L. S., Hall, S., J. Appl. Phys. 85, 6828 (1999)Google Scholar
20 Rignanese, G.-M., Pasquarello, A., Phy. Rev (B) 63, 075307 (2001)Google Scholar
21 Fan, Z., Zao, G., Chu, P. K., Jin, Z., Kwok, H. S. and Wong, M., Appl. Phys. Lett. 73 (1998), 360 Google Scholar
22 Prabhakaran, K., Maeda, F., Watanabe, Y., Ogino, T., Appl. Phys. Lett. 76 (2000), 2244 Google Scholar