Hostname: page-component-7479d7b7d-c9gpj Total loading time: 0 Render date: 2024-07-08T19:37:47.026Z Has data issue: false hasContentIssue false

Laser Cleaning of Nanoparticles from Solid Surfaces

Published online by Cambridge University Press:  17 March 2011

Y.F. Lu
Affiliation:
Laser Microprocessing Laboratory, Department of Electrical Engineering and Data Storage Institute, National University of Singapore, 10 Kent Ridge Crescent, Singapore119260, Tel: (65)8742118, Fax: (65)779-1103, Email: [email protected]
W.Y. Zheng
Affiliation:
Laser Microprocessing Laboratory, Department of Electrical Engineering and Data Storage Institute, National University of Singapore, 10 Kent Ridge Crescent, Singapore119260, Tel: (65)8742118, Fax: (65)779-1103, Email: [email protected]
L. Zhang
Affiliation:
Laser Microprocessing Laboratory, Department of Electrical Engineering and Data Storage Institute, National University of Singapore, 10 Kent Ridge Crescent, Singapore119260, Tel: (65)8742118, Fax: (65)779-1103, Email: [email protected]
B. Luk'yanchuk
Affiliation:
Laser Microprocessing Laboratory, Department of Electrical Engineering and Data Storage Institute, National University of Singapore, 10 Kent Ridge Crescent, Singapore119260, Tel: (65)8742118, Fax: (65)779-1103, Email: [email protected]
W.D. Song
Affiliation:
Laser Microprocessing Laboratory, Department of Electrical Engineering and Data Storage Institute, National University of Singapore, 10 Kent Ridge Crescent, Singapore119260, Tel: (65)8742118, Fax: (65)779-1103, Email: [email protected]
W.J. Wang
Affiliation:
Laser Microprocessing Laboratory, Department of Electrical Engineering and Data Storage Institute, National University of Singapore, 10 Kent Ridge Crescent, Singapore119260, Tel: (65)8742118, Fax: (65)779-1103, Email: [email protected]
M.H. Hong
Affiliation:
Laser Microprocessing Laboratory, Department of Electrical Engineering and Data Storage Institute, National University of Singapore, 10 Kent Ridge Crescent, Singapore119260, Tel: (65)8742118, Fax: (65)779-1103, Email: [email protected]
T.C. Chong
Affiliation:
Laser Microprocessing Laboratory, Department of Electrical Engineering and Data Storage Institute, National University of Singapore, 10 Kent Ridge Crescent, Singapore119260, Tel: (65)8742118, Fax: (65)779-1103, Email: [email protected]
Get access

Abstract

The experimental analysis of dry laser cleaning efficiency is done for certified spherical particle (SiO2, 5.0, 2.5, 1.0 and 0.5 μm) from different substrates (Si, Ge and NiP). The influence of different options (laser wavelength, incident angle, substrate properties, i.e. type of material, surface roughness, etc.) on the cleaning efficiency is presented in addition to commonly analyzed options (cleaning efficiency versus laser fluence and particle size). Found laser cleaning efficiency demonstrates a great sensitivity to some of these options (e.g. laser wavelength, angle of incidence, etc.). Partially these effects can be explained within the frame of the Mie theory of scattering. Other effects (e.g. influence of roughness) can be explained along the more complex line, related to examination of the problem “particle on the surface” beyond the Mie theory. 0.5 μm spherical silica particles were placed on Silicon (100) substrate. After laser irradiation with a 248 nm KrF excimer laser, hillocks with size of about 100 nm were obtained at the original position of the particles. Mechanism of the formation of the sub-wavelength structures were investigated and found to be the near-field optical resonance effect induced by particles on surface. Theoretical prediction of the near-field light intensity distribution was presented, which was in agreement with the experimental result.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Zapka, W., Ziemlich, W. and Tam, A. C., Appl. Phys. Lett. 58, 2217 (1991).Google Scholar
[2] Mittal, K. L. (Ed.), Particles on the Surfaces 1. Detection, Adhesion, , and Removal, , (Plenum Press, N.Y. & London, 1988).Google Scholar
[3] Lee, S. J., Imen, K., Allen, S. D., J. Appl. Phys. 74, 7044 (1993).Google Scholar
[4] Kelly, J. D., Hovis, F. E., Microelectron. Eng. 20, 159 (1993).Google Scholar
[5] Jette, A. N., Benson, R. C., J. Appl. Phys. 75, 3130 (1994).Google Scholar
[6] Larciprette, R., Borsella, E., J. Electron Spectroscopy and Related Phenomena 76, 607 (1995).Google Scholar
[7] Lu, Y. F., Song, W. D., Hong, M. H., Chong, T. C., Low, T. C., Appl. Phys. A 64, 573 (1997).Google Scholar
[8] Kolomenskii, A. A., Schuessler, H. A., Mikhalevich, V. G., Maznev, A. A., J. Appl. Phys. 84, 2404 (1998).Google Scholar
[9] Liederer, P., Boneberg, J., Mosbacher, M., Schilling, A., Yavas, O., Proc. SPIE, vol. 3274, 68 (1998).Google Scholar
[10] Lu, Y. F., Zheng, Y. W., Song, W. D., Appl. Phys. A 68, 569 (1999).Google Scholar
[11] Dobler, V., Oltra, R., Boquillon, J. P., Mosbacher, M., Boneberg, J., Leiderer, P., Appl. Phys. A 69, S335 (1999).Google Scholar
[12] Vereecke, G., Röhr, E., Heyns, M. M., J. Appl. Phys. 85, 3837 (1999).Google Scholar
[13] Wu, X., Sacher, E., Meunier, M., J. Appl. Phys. 86, 1744 (1999).Google Scholar
[14] She, M., Kim, D., Grigoropoulos, C. P., J. Appl. Phys. 86, 6519 (1999).Google Scholar
[15] Halfpenny, D. R., Kane, D. M., J. Appl. Phys. 86, 6641 (1999).Google Scholar
[16] Oltra, R., Arenholz, E., Leiderer, P., Kautek, W., Fotakis, C., Autric, M., Afonso, C., Wazen, P., Proc. SPIE, vol. 3885, 499 (2000)Google Scholar
[17] Lu, Y. F., Zheng, Y. W., Song, W. D., J. Appl. Phys. 87, 2404 (2000).Google Scholar
[18] Wu, X., Sacher, E., Meunier, M., J. Appl. Phys. 87, 3618 (2000).Google Scholar
[19] Vereecke, G., Röhr, E., Heyns, M. M., Appl. Surf. Sci. 157, 67 (2000).Google Scholar
[20] Halfpenny, D. R., Kane, D. M., Lamb, R. N., Appl. Phys. A 71, 147 (2000).Google Scholar
[21] Zheng, Y. W., Lu, Y. F., Mai, Z. H., Song, W. D., Jpn. J. Appl. Phys., 39, 5894 (2000)Google Scholar
[22] Leiderer, P., Boneberg, J., Dobler, V., Mosbacher, M., Münzer, H.-J., Chaoui, N., Siegel, J., Solis, J., Afonso, C. N., Fourrier, T., Schrems, G., Bäuerle, D.: Proc. SPIE, vol. 4065, 249 (2000)Google Scholar
[23] Luk'yanchuk, B. S., Zheng, Y. W., Lu, Y. F.: Proc. SPIE, vol. 4065, 576 (2000)Google Scholar
[24] Mosbacher, M., Münzer, H.-J., Zimmermann, J., Solis, J., Boneberg, J., Leiderer, P.: Appl. Phys. A 71, (2000) – in pressGoogle Scholar
[25] Lu, Y. F., Zhang, L., Song, W. D., Zheng, Y. W., Luk'yanchuk, B. S.: JETP Letters, vol. 72, issue 9, 658 (2000)Google Scholar
[26] Münzer, H.-J., Mosbacher, M., Bertsch, M., Zimmermann, J., Leiderer, P., Boneberg, J., Journal of Microscopy, (2000) – in pressGoogle Scholar
[27] Rimai, D. S., DeMejo, L. P., Bowen, R.C., J. Appl. Phys. 68, 6235 (1990).Google Scholar
[28] Stalder, A., Durig, U., J. Vac. Sci. Technol. B 14, 1259 (1996).Google Scholar
[29] Douglas, L. J., Swol, F. V., J. Chem. Phys. 106, 3782 (1997).Google Scholar
[30] Mann, A. B., Pethica, J. B., Appl. Phys. Lett. 69, 907 (1996).Google Scholar
[31] Bengisu, M. T., Akay, A., J. Acoust. Soc. Am. 105, 194 (1999).Google Scholar
[32] Dishman, K. L., Doolin, P. K., Joffman, J. F., Ind. Eng. Chem. Res. 32, 1457 (1993).Google Scholar
[33] Chang, G. Y., Sze, S. M., ULSI Technology (McGraw-Hill International, Singapore, 1996).Google Scholar