Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-16T16:57:11.307Z Has data issue: false hasContentIssue false

Ion-Assisted Pulsed Laser Deposition of Amorphous Tetrahedral-Coordinated Carbon Films

Published online by Cambridge University Press:  21 February 2011

T.A. Friedmann
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
D.R. Tallant
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
J.P. Sullivan
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
M.P. Siegal
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
R.L. Simpson
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
Get access

Abstract

A parametric study has been performed of amorphous tetrahedral carbon (a-tC) films produced by ion- assisted pulsed laser deposition (IAPLD). The ion voltage, current density, and feed gas composition (nitrogen in argon) have been varied. The resultant films were characterized by thickness, residual stress, Raman spectroscopy, and electrical resistivity. The Raman spectra have been fit to two gaussian peaks, the so called graphitic (“G”) peak and the disorder (“D”) peak. It has been found that the magnitude of the D peak and the residual compressive stress are inversely correlated. At low beam voltages and currents, the magnitude of the D peak is low, increasing as the ion beam voltage and current are raised. The ion beam voltage has the most dramatic effect on the magnitude of the D peak. At low voltages (200–500 V) the magnitude of the D peak is greater for ion beams with high percentages of nitrogen possibly indicative of C-N bonding in the films. At higher voltages (500 - 1500V) the D peak intensity is less sensitive to the nitrogen content of the beam.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Collins, C.B., Davanloo, F., Juengerman, E.M., Osborn, W.R., and Jander, D.R., Appl. Phys. Lett. 54, 216 (1988).Google Scholar
2 Marquardt, C.L., Williams, R.T., and Nagel, D.J., in Plasma Synthesis and Etching of Electronic Materials, edited by Chang, R.P.H. and Abeles, B. (Materials Research Society, Pittsburgh, 1985), Vol. 38, p. 325.Google Scholar
3 Pappas, D.L., Sänger, K.L., Bruley, J., Krakow, W., Cuomo, J.J., Gu, T., and Collins, R.W., J. Appl. Phys. 71, 5675 (1992).Google Scholar
4 Xiong, F., Wang, Y.Y., Leppert, V., and Chang, R.P.H., J. Mater. Res. 8, 2265 (1993).Google Scholar
5 Friedmann, T.A., Siegal, M.P., Tallant, D.R., Simpson, R.L., and Domínguez, F., in Novel Forms of Carbon II, edited by Renschler, C.L., Cox, D., Pouch, J., and Achiba, Y. (Materials Research Society, Pittsburgh, 1994), Vol. 349,.Google Scholar
6 Siegal, M.J., Friedmann, T.A., Kurtz, S.R., Tallant, D.R., Simpson, R.L., Domínguez, F., and McCarty, K.F., in Novel Forms of Carbon II, edited by Renschler, C.L., Cox, D., Pouch, J., and Achiba, Y. (Materials Research Society, Pittsburgh, 1994), Vol. .Google Scholar
7 Scaglione, S., Giorgi, R., Lascovich, J.C., and Ottaviani, G., Surf. Coat. Technol. 47, 287 (1991).Google Scholar
8 He, X., Li, W., Li, H., and Fan, Y., Nucl. Instrum. Meth. Phys. Res. B 82, 528 (1993).Google Scholar
9 Huck, H., Jech, A., Halac, E.B., Nicolai, J., Benyacar, M.A.R.d., and Righini, R., Nucl. Instr. and Meth. in Phys. Res. B 84, 62 (1994).Google Scholar
10 Spencer, E.G., Schmidt, P.H., Joy, D.C., and Sansalone, F.J., Appl. Phys. Lett. 29, 118 (1976).Google Scholar
11 Fallón, P.J., Veerasamy, V.S., Davis, C.A., Robertson, J., Amaratunga, G.A.J., Milne, W.I., and Koskinen, J., Phys. Rev. B 48, 4777 (1993).Google Scholar
12 Aksenov, I. I. and Strel'nitskij, V.E., Surf. Coat. Technol. 47, 98 (1991).Google Scholar
13 Berger, S.D., McKenzie, D.R., and Martin, P.J., Philos. Mag. Lett. 57, 285 (1988).Google Scholar
14 McKenzie, D.R., Müller, D., Pailthorpe, B.A., Wang, Z.H., Kravtchinskaia, E., Segal, D., Lukins, P.B., Swift, P.D., Martin, P.J., Amaratunga, G., Gaskell, P.H., and Saeed, A., Diam. Rel. Mater. 1, 51 (1991).Google Scholar
15 Davis, C.A., Yin, Y., McKenzie, D.R., Hall, L.E., Kravtchinskaia, E., Keast, V., Amaratunga, G.A.J., and Veerasamy, V.S., J. Non-Cryst. Solids 170, 46 (1994).Google Scholar
16 Veerasamy, V.S., Amaratunga, G.A.J., Park, J.S., Milne, W.I., MacKenzie, H.S., and McKenzie, D.R., Appl. Phys. Lett. 64, 2297 (1994).Google Scholar
17 Higashi, G.S., Chabal, Y.J., Trucks, G.W., and Raghavachari, K., Appl. Phys. Lett. 56, 656 (1990).Google Scholar
18 Ramsteiner, M. and Wagner, J., Appl. Phys. Lett. 51, 1355 (1987).Google Scholar
19 Hoffman, R.W., Phys. Thin Films 3, 211 (1966).Google Scholar
20 Chen, M.Y., Li, D., Lin, X., Dravid, V.P., Chung, Y.W., Wong, M.S., and Sproul, W.D., J. Vac. Sei. Technol. A 11, 521 (1993).Google Scholar