Hostname: page-component-5c6d5d7d68-7tdvq Total loading time: 0 Render date: 2024-08-22T13:31:51.541Z Has data issue: false hasContentIssue false

Investigation of the Kinetics of Surface-Limited thin Film Growth of SiGe Alloys by CVD of Si2H6/Ge2 H6 Mixtures

Published online by Cambridge University Press:  22 February 2011

J. W. Sharp
Affiliation:
Department of Physics and Astronomy, The University of Tennessee, Knoxville, Tennessee 37896–2200
Gyula Eres
Affiliation:
Oak Ridge National Laboratory, P. O. Box 2008, Oak Ridge, TN 37831–6056
Get access

Abstract

The kinetics of surface-limited thin film growth of SiGe alloys was investigated by time-resolved surface differential reflectometry. The source gas, mixtures of disilane and digermane in ratios from 1:1 to 6:1 in helium carrier gas, was delivered to a heated Si(001) substrate by a fast-acting pulsed molecular jet valve. The adsorption and desorption kinetics were determined from the surface differential reflectance signal obtained using a polarized, high-stability HeNe probe laser. Thin film growth was studied in the temperature range of 400–600°C on Si(001) substrates. Preferential incorporation of digermane into the film produces an alloy composition that depends upon but does not mirror the gas composition. For all gas mixtures, there is a strong temperature dependence of the rate at which the adsorption layer decomposes into film plus by-product. The kinetic data and the alloy compositions provide a basis for deducing some of the characteristics of the reaction sequence that leads to SiGe alloy thin film growth.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Iyer, Subramanian S., Patton, Gary L., Stork, Johannes M. C., Meyerson, Bernard S. and Harame, David L., IEEE Trans, on Electronic Devices 36, 2043 (1989).Google Scholar
2 Kasper, E., in: Heterostructures on Silicon: One Step Further with Silicon, ed. Nissim, Yves I. and Rosencher, Emmanuel, (Kluwer Academic Publishers, 1989), pp. 101119.Google Scholar
3 Suzuki, Setsu and Itoh, Tadatsugu, J. Appl. Phys. 54, 6385 (1983).Google Scholar
4 Jang, Syun-Ming and Reif, Rafael, Appl. Phys. Lett. 59, 3162 (1991).Google Scholar
5 Kato, Manabu, Murota, Junichi and Ono, Shoichi, J. Cryst. Growth 115, 117 (1991).Google Scholar
6 Meyerson, Bernard S., Uram, Kevin J. and LeGoues, Francoise K., Appl. Phys. Lett. 53, 2555 (1988).Google Scholar
7 Michael Greenlief, C., Gates, Stephen M. and Holbert, Philip A., J. Vac. Sci. Technol. A 7, 1845 (1989).Google Scholar
8 Robbins, D. J., Glasper, J. L., Cullis, A. G. and Leong, W. Y., J. Appl. Phys. 69, 3729 (1991).Google Scholar
9 Jang, Syun-Ming and Reif, Rafael, Appl. Phys. Lett. 60, 707 (1992).Google Scholar
10 Ning, Bob M. H. and Crowell, John E., Appl. Phys. Lett. 60, 2914 (1992).Google Scholar
11 Michael Greenlief, C., Wankum, Patricia C., Klug, Debra-Ann and Keeling, Lori A., J. Vac. Sci. Technol. A 10, 2465 (1992).Google Scholar
12 Sharp, J. W. and Eres, Gyula, submitted to Applied Physics Letters. Google Scholar
13 Surnev, L. and Tikhov, M., Surf. Sci. 138, 40 (1984).Google Scholar
14 Takahagi, T., Nagai, I., Ishitani, A., Kuroda, H. and Nagasawa, Y., J. Appl. Phys. 64, 3516 (1988).Google Scholar
15 Bozso, F., and Avouris, Ph., Phys. Rev. B 38, 3943 (1988).Google Scholar
16 Crowell, John E. and Lu, Guangquan, J. Elec. Spectrosc. and Relat. Phenom. 54/55, 1045 (1990).Google Scholar
17 Mclntyre, J. D. E. and Aspnes, D. E., Surf. Sci. 24, 417 (1971).Google Scholar
18 Sharp, J. W. and Eres, Gyula, accepted for publication in Journal of Crystal Growth.Google Scholar
19 Cohen, Stephen M., Yang, Yuemei L., Rouchouze, Eric, Jin, Tuo and D'Evelyn, Mark P., J. Vac. Sci. Technol. A 10, 2166 (1992).Google Scholar
20 Schulze, G. and Henzler, M., Surf. Sci. 124, 336 (1983).Google Scholar
21 Gupta, P., Colvin, V. L. and George, S. M., Phys. Rev. B 37, 8234 (1988).Google Scholar
22 Koehler, B. G., Mak, C. H., Arthur, D. A., Coon, P. A. and George, S. M., J. Chem. Phys. 89, 1709 (1988).Google Scholar
23 Sinniah, Kumar, Sherman, Michael G., Lewis, Lisa B., Henry Weinberg, W., Yates, John T. Jr, and Janda, Kenneth C., Phys. Rev. Lett. 62, 567 (1989).Google Scholar
24 Meyerson, Bernard S., Himpsel, Franz J. and Uram, Kevin J., Appl. Phys. Lett. 57, 1034 (1990).Google Scholar
25 Wise, M. L., Koehler, B. G., Gupta, P., Coon, P. A. and George, S. M., Surf. Sci. 258, 166 (1991).Google Scholar
26 Sakurai, Toshio and Hagstrum, Homer D., Phys. Rev. B 14, 1593 (1976).Google Scholar
27 Appelbaum, Joel A., Baraff, G. A., Hamann, D. R., Hagstrum, H. D. and Sakurai, T., Surf. Sci. 70, 654 (1978).Google Scholar
28 Boland, John J., Phys. Rev. Lett. 67, 1539 (1991).Google Scholar