Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-07-05T05:55:05.410Z Has data issue: false hasContentIssue false

Initial Stage of InGaAs Growth on GaAs(100)

Published online by Cambridge University Press:  25 February 2011

D. Gerthsen
Affiliation:
Institut für Festkörperforschung, Forschungszentrum Jülich GmbH, Postfach 1913, D-W5170 JUlich, Germany
M. Lentzen
Affiliation:
Institut für Festkörperforschung, Forschungszentrum Jülich GmbH, Postfach 1913, D-W5170 JUlich, Germany
A. Förster
Affiliation:
Institut für Schicht- und Ionentechnik, Forschungszentrum Jülich GmbH, Postfach 1913, D-WS170 JUlich, Germany
Get access

Abstract

The growth mode and the relaxation of MBE grown InxGa1-xiAs layers (0.13 ≦ x ≦ 1.0, nominal film thickness 5 nm) on GaAs(100) substrates with a lattice-parameter mismatch were investigated by transmission electron microscopy (TEM). The transition between two- and three-dimensional growth occurs at x ≈ 0.4. The three-dimensional growth mode for x ≥ 0.6 results in a wide spectrum of island sizes. In contrast to the two-dimensional growth mode, the strain state of a three-dimensionally growing layer is completely inhomogeneous because the relaxation of the strain is correlated with the island size. The reduction of elastic strain for islands is reasonably described by an energy balance model.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Merwe, J.H. van der, in Single Crystal Films (Pergamon, Oxford, 1964)Google Scholar
2. Matthews, J.W. and Blakeslee, A.E., J. Cryst. Growth 27, 118 (1974)Google Scholar
3. People, R. and Bean, J.C., Appl. Phys. Lett. 47, 322 (1985)Google Scholar
4. Dodson, B.W. and Tsao, J., Appl. Phys. Lett. 51, 1325 (1987), B.W. Dodson and J.Y. Tsao Appl. Phys. Lett. 52, 852 (1988)Google Scholar
5. Al-Jassim, M.M., Goral, J.P., Sheldon, P. and Jones, K.M. in Advances in Materials, Processing and Devices, edited by Sadana, D.K., Eastman, L. and Dupuis, R. (Mater. Res. Symp. Proc. Vol. 144, 1989) pp.183188 Google Scholar
6. Glas, F., Guille, G., Henoc, P. and Houzay, F. in Microscopy of Semiconduction Materials 1987 (IOP, London 1987), Inst. Phys. Conf. Ser. 87, 71 Google Scholar
7. Guha, S., Madhukar, A. and Rajkumar, K.J., Appl. Phys. Lett. 57, 2110 (1990)Google Scholar
8. Vincent, R., Philos. Mag. 19, 1127 (1969)Google Scholar
9. Jesser, W.A. and Merwe, J.H. van der, Philos. Mag. 24, 295 (1971)Google Scholar
10. Matthews, J.W., in Dislocations in Solids, edited by Nabarro, F.R.N. (North Holland, New York, 1979), Vol. 2, Chap. 7Google Scholar
11. Bravman, J.C. and Sinclair, R., J. Elec. Mic. Tech. 1, 53 (1984)Google Scholar
12. Lentzen, M., Gerthsen, D., FOrster, A. and Urban, K., Appl. Phys. Lett. 60, 74 (1992)Google Scholar
13. Fischer-Colbrie, A., Miller, J.N., Ladermann, S.S., Rosner, S.J. and Hull, R., J. Vac. Sci. Technol. B6, 620 (1988)Google Scholar
14. Elman, B., Koteles, Emil S., Melman, P., Jagannath, C., Lee, Johnson and Dugger, D., Appl. Phys. Lett. 55, 1659 (1989)Google Scholar
15. Whaley, G.J. and Cohen, P.I., Appl. Phys. Lett. 57, 144 (1990)Google Scholar
16. Miles, R.H., McGill, T.C., Chow, P.P., Johnson, D.C., Hauenstein, R.J., Nieh, C.W., Strathman, M.D., Appl. Phys. Lett. 52, 916 (1988)Google Scholar