Hostname: page-component-7479d7b7d-wxhwt Total loading time: 0 Render date: 2024-07-08T16:51:19.171Z Has data issue: false hasContentIssue false

In Situ Characterization of thin film Growth by Ftir Irras

Published online by Cambridge University Press:  25 February 2011

J. E. Butler
Affiliation:
Naval Research Laboratory, Chemistry Division, Washington, DC, 20375
K. B. Koller
Affiliation:
Naval Research Laboratory, Chemistry Division, Washington, DC, 20375
W. A. Schmidt
Affiliation:
Naval Research Laboratory, Electronics Science and Technology Division, Washington, DC, 20375.
Get access

Abstract

In-situ analysis of low temperature Plasma Enhanced Chemical Vapor Deposition (PECVD) SiO2 films deposited on HgCdTe, Silicon, and Aluminum substrates was performed by double modulation Fourier Transform Infrared Reflection Absorption spectroscopy (FT-IRRAS). The sensitivity and selectivity of this technique are sufficient for an in-situ assessment of the film quality and reaction conditions at any stage of film growth. An oblique angle of incidence of ca. 557deg; was chosen to yield maximum sensitivity for the 1260 cm−1 LO mode of SiO2 on Si. The peak frequency and shape of the LO mode absorption band varied with the quality of the SiO2 films. This diagnostic technique can be applied readily to in-situ analysis of dielectric thin films formed under a variety of reaction conditions as long as the gaseous ambient is partially transmissive to the IR radiation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Waterman, J. R. and Schmidt, W. A., Proceedings IRIS Detector Specialty Group Meeting (1986).Google Scholar
2. Wong, J., J. Electron. Mater. 5, 113 (1976).CrossRefGoogle Scholar
3. Pai, P. G., Chao, S. S., Takagi, Y. and Lucovsky, G., J. Vac. Sci. Technol. A 4 689 (1986).Google Scholar
4. Pan, P., Nesbit, L. A., Douse, R. W. and Gleason, R. T., J. Electrochem. Soc. 132, 2012 (1985).CrossRefGoogle Scholar
5. Shabalov, A. L. and Feldman, M. S., Thin Solid Films 151, 317 (1987).CrossRefGoogle Scholar
6. Lucovsky, G., Manitini, M. J., Srivastava, J. K. and Irene, E. A., J. Vac. Sci. Technol. B 5, 530 (1987).Google Scholar
7. Berreman, D. W., Phys. Rev. 130, 2193 (1963).CrossRefGoogle Scholar
8. Lyddane, R. H., Sachs, R. G. and Teller, E., Phys. Rev. 51, 673 (1941).CrossRefGoogle Scholar
9. Scott, J. F. and Porto, S. P. S., Phys. Rev. 161, 903 (1967).CrossRefGoogle Scholar
10. Greenler, R. G., J. Chem. Phys. 44, 310 (1966).Google Scholar
11. Golden, W. G., Dunn, D. S., and Overend, J., J. Catal. 71, 395 (1981).Google Scholar
12. Nafie, L. A. and Vidrine, D. W., in Fourier Transform Infrared Spectroscopy, Vol.3, edited by Ferraro, J. R. and Basile, L. J., (Academic Press, Inc., Orlando, 1982) p. 83.Google Scholar
13. Jasperson, S. N. and Schnatterly, S. E., Rev. Sci. Instr. 40, 761 (1969).Google Scholar
14. Dowrey, A. E. and Marcott, C., Appl. Spectro. 36, 414 (1982).Google Scholar
15. Bermudez, V. M. and Ritz, V. H., Appl. Opt. 17, 542 (1978).Google Scholar
16. Edwards, D. F., and Philipp, H. R. in Handbook of Optical Constants of Solids, edited by Palik, E. D. (Academic Press, Inc., Orlando, 1985) pp. 547 and 749.CrossRefGoogle Scholar
17. Krishnan, K. and Mundhe, R. B., SPIE, Spectroscopic Characterization Techniques for Semiconductor Technology 452, 71 (1983).Google Scholar