Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-29T07:40:59.334Z Has data issue: false hasContentIssue false

Impact of Phase Stability on the Corrosion Behavior of the Austenitic Candidate Materials For NNSWI.

Published online by Cambridge University Press:  28 February 2011

Daniel B. Bullen
Affiliation:
Science & Engineering Associates, Inc., 5820 Stoneridge Mall Rd., Suite 100, Pleasanton, CA 94566
Gregory E. Gdowski
Affiliation:
Science & Engineering Associates, Inc., 5820 Stoneridge Mall Rd., Suite 100, Pleasanton, CA 94566
R. Daniel McCright
Affiliation:
Nuclear Waste Management Program, Lawrence Livermore National Laboratory, P.O. Box 808 L–369, Livermore, CA 94550.
Get access

Abstract

The Nuclear Waste Management Program at Lawrence Livermore National Laboratory is responsible for the development of the waste package design to meet the Nuclear Regulatory Commission licensing requirements for the Nevada Nuclear Waste Storage Investigations (NNWSI) Project. The metallic container component of the waste package is required to assist in providing substantially complete containment of the waste for a period of up to 1000 years. Long term phase stability of the austenitic candidate materials (304L and 316L stainless steels and alloy 825) over this time period at moderate temperatures (100–250°C) can impact the mechanical and corrosion behavior of the metal barrier.

A review of the technical literature with respect to phase stability of 304L, 316L and 825 is presented. The impact of martensitic transformations, carbide precipitation and intermediate (σ. χ, and η) phase formation on the mechanical properties and corrosion behavior of these alloys at repository relevant conditions is discussed. The effect of sensitization on intergranular stress corrosion cracking (IGSCC) of each alloy is also addressed. A summary of the impact of phase stability on the degradation of each alloy in the proposed repository environment is included.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. O'Neal, W.C., Gregg, D.W., Hockman, J.N., Russell, E.W. and Stein, W., Lawrence Livermore National Laboratory Report UCRL 53595, November 1, 1984.Google Scholar
2. Novak, C.J., in Handbook of Stainless Steels, eds. Peckner, D. and Bernstein, I.M. (McGraw Hill Book Co., New York, 1977), Chapter 4.Google Scholar
3. Marshall, P., Austenitic Stainless Steels, (Elsevier Publishers, London, 1984).Google Scholar
4. Betteridge, W., Nickel and Its Alloys, (John Wiley & Sons, New York, 1984).Google Scholar
5. Bain, E.C. and Abom, R.H., in Metals Handbook, (American Society for Metals, Metals Park, Ohio, 1948), p. 1261.Google Scholar
6. Speich, G.R., in Metals Handbook, Vol.8, (American Society for Metals, Metals Park, Ohio, 1973) p. 425.Google Scholar
7. Krauss, G. and Marder, A.R., Metall. Trans. 2, 2343 (1971).CrossRefGoogle Scholar
8. Reed, R.P. and Breedis, F.J., ASTM STP 387, 60132 (1966).Google Scholar
9. Breedis, J.F., Trans. AIME, 230, 1583 (1964).Google Scholar
10. Venables, J.A., Phil. Mag., 7, 35 (1962).Google Scholar
11. Dash, J. and Otte, H.M., Acta Metall. 11, 1169 (1963).CrossRefGoogle Scholar
12. Cina, J., J. Iron Steel Inst., 177, 406 (1954).Google Scholar
13. Reed, R.P., Acta Metall., 10, 865 (1962).Google Scholar
14. Breedis, J.F. and Robertson, W.D., Acta Metall., 10, 1077 (1962).CrossRefGoogle Scholar
15. Cihal, V., Prot. Met., (USSR) 4, 563 (1968).Google Scholar
16. Stickler, R. and Vinckier, A., Trans. Am. Soc. Met., 54, 362(1961).Google Scholar
17. Weiss, B. and Stickler, R., Metall. Trans., 3, 851 (1972).Google Scholar
18. DaCasa, C., Nileshwar, V.B. and Melford, D.A., J. Iron Steel Inst., London, 207, 1325 (1969).Google Scholar
19. Spitznagel, J.A. and Stickler, R., Metall. Trans., 5, 1363 (1974).Google Scholar
20. Bechtoldt, C.J. and Vacher, H.C., J. Res., Nat. Bur. Stand., 58, 7 (1953).Google Scholar
21. Bain, E.C. and Griffiths, W.E., Trans. AIME., 75, 166 (1927).Google Scholar
22. Talbot, A.M. and Furman, D.E., Trans. AIME, 45, 429 (1942).Google Scholar
23. Henthorne, M., ASTM STP 516, 66 (1972).Google Scholar
24. Brown, M.H. and Kirchner, R.W., Corrosion, 29, 470 (1973).Google Scholar
25. Brown, M.H., Corrosion, 25, 438 (1969).CrossRefGoogle Scholar
26. Copson, H.R., Hopkinson, B.E. and Lang, F.S.., Proc. ASTM, 61, 879 (1961).Google Scholar
27. Raymond, E.L., Corrosion, 24, 180 (1968).Google Scholar
28. Sims, C.T., Journal of Metals, 18, 1119 (1966).Google Scholar
29. Sullivan, C.P. and Donachie, M.J., Jr., Metals Engr. Qtly., 7 (2), 36 (1972).Google Scholar
30. Muzyka, D.R., Jr., Metals Engr. Qtly., 11 (4), 12 (1971).Google Scholar
31. Holt, R.T. and Wallace, W., Intl. Metals Rev. 21, 1 (1976).Google Scholar
32. Chen, G., Xie, X., Ni, K., Xu, Z., Zhang, M. and Ju, Y., in Suneralloys 1980, (American Society for Metals, Metals Park, Ohio, 1980), pp.323333.Google Scholar