Hostname: page-component-5c6d5d7d68-qks25 Total loading time: 0 Render date: 2024-08-18T22:17:12.692Z Has data issue: false hasContentIssue false

Hydrogen Diffusion in N-Type Silicon.Comparison With P-Type Silicon

Published online by Cambridge University Press:  26 February 2011

R. Rizk
Affiliation:
Laboratoire de Physique des Solides de Bellevue - CNRS, 1 Place A. Briand - 92195 Meudon Cddex, France.
P. De Mierry
Affiliation:
Laboratoire de Physique des Solides de Bellevue - CNRS, 1 Place A. Briand - 92195 Meudon Cddex, France.
D. Ballutaud
Affiliation:
Laboratoire de Physique des Solides de Bellevue - CNRS, 1 Place A. Briand - 92195 Meudon Cddex, France.
M. Aucouturier
Affiliation:
Laboratoire de Physique des Solides de Bellevue - CNRS, 1 Place A. Briand - 92195 Meudon Cddex, France.
D. Mathiot
Affiliation:
CNET-CNS, BP 98 - 38243 Meylan Cddex, France.
Get access

Abstract

Deuterium diffusion profiles in medium phosphorus doped silicon (1016 and 1017 cm−3) at two different deuteration temperatures (120 and 150°C) are simulated with an improved version of a previously reported model. The new approach which excludes the H2 molecule formation, as applied recently to ptype silicon, allows the determination of kinetic and thermodynamic parameters such as diffusion coefficients, activation and dissociation energies. These parameters 6re compared with those found for p-type silicon and discussed in the light ofavailable data for n-type material.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Pearton, S.J., Corbett, J.W. and Shi, T.S., Appl. Phys. A 43, 153 (1987) ;Google Scholar
1a. Chevallier, J. and Aucouturier, M., Ann. Rev.Mater. Sci. 18, 219 (1988).Google Scholar
2. Tavendale, A.J., Alexiev, D. and Williams, A.A., Appl. Phys.Lett. 47, 316 (1985).Google Scholar
3. Pantelides, S.T., Appl. Phys. Lett. 50, 995 (1987).Google Scholar
4. Johnson, N.M. and Herring, C., Phys. Rev. B 38, 1581 (1988) ;Google Scholar
4a. Proc. 15 th Int. Conf. Defects in Semicond., Mater. Sci. Forum 38–41, 961 (1989).Google Scholar
5. Johnson, N.M., Herring, C. and Chadi, D.J., Phys. Rev. Lett. 56, 769 (1986).Google Scholar
6. Bergman, K., Stavola, M., Pearton, S.J. and Lopata, J., Phys.Rev. B 37, 2770 (1988).Google Scholar
7. Tavendale, A.J., Pearton, S.J. and Williams, A.A., Appl.Phys. lett. 56, 949 (1990).Google Scholar
8. Zhu, J., Johnson, N.M. and Herring, C., Phys. Rev. B, 41, 12354 (1990).Google Scholar
9. Mathiot, D., Phys. Rev. B 40, 5867 (1989).Google Scholar
10. Rizk, R., de Mierry, P., Ballutaud, D., Aucouturier, M. and Mathiot, D., 6 th Trieste Semicond. Symp. on : Hydrogen in Semiconductors : Bulk and Surface Properties, 27-31 August 1990, to be published in Physica B (1991).Google Scholar
11. Pankove, J.I., Wance, R.O. and Berkeyheiser, J.E., Appl.Phys. Lett. 45, 1100 (1984).Google Scholar
12. Johnson, N.M., Ponce, F.A., Street, R.A. and Nemanich, R.J., Phys. Rev. B 35, 4166 (1987).Google Scholar
13. Estreicher, S.K., Throckmorton, L. and Marynick, D., Phys.Rev. B 39, 13241 (1989).Google Scholar