Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-25T17:55:32.005Z Has data issue: false hasContentIssue false

High Performance Thin Film Transistors for Scanner Applications

Published online by Cambridge University Press:  21 February 2011

B.-C. Hseih
Affiliation:
Electronics Research Laboratory, Eastman Kodak Company, Rochester, NY. 14650-2019
G.A. Hawkins
Affiliation:
Electronics Research Laboratory, Eastman Kodak Company, Rochester, NY. 14650-2019
S. Ashok
Affiliation:
Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA. 16802
Get access

Abstract

We report on the characteristics of polycrystalline silicon (polysilicon) thin film transistors (TFTs) fabricated with low temperature crystallized LPCVD amorphous silicon film as an active layer and plasma enhanced chemical vapor deposition (PECVD) SiO2 as a gate insulator. High performance transistor characteristics are achieved, even though no process temperature exceeds 600°C. No threshold drift has been observed. As a result, these devices are highly suitable for application to image scanners as well as flat panel displays.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hawkins, W.G., IEEE Trans. Electron Devices, ED-33, 477 (1986).Google Scholar
2. Morozumi, S. et al. , SID Symp. Digest, 316 (1984).Google Scholar
3. Morozumi, S. et al. , IEEE Trans. Electron Devices, ED-32, 1546 (1985).Google Scholar
4. Chiang, A. and Johnson, N.M., IEEE Trans. Electron Devices, ED-32, 1559 (1985).Google Scholar
5. Hatalis, M.K. and Greve, D.W., J. Appl. Phys. 63, 2260 (1988).Google Scholar
6. Hatalis, M.K. and Greve, D.W., IEEE Electron Device Lett. EDL-8, 361 (1987).Google Scholar
7. Morita, N. et al. , IEDM Tech. Digest, 144 (1984).Google Scholar
8. Batey, J. and Tierney, E., J. Appl. Phys. 60, 3136 (1986).10.1063/1.337726Google Scholar
9. Stasiak, J. et al. , IEEE Electron Device Lett. EDL-10, 245 (1989).Google Scholar
10. Castagne, R. and Vapaille, A., Surface Sci. 28, 557 (1971).Google Scholar
11. Nicollian, E.H. and Goetzberger, A., Bell Syst. Tech. J. 46, 1055, (1967).10.1002/j.1538-7305.1967.tb01727.xGoogle Scholar
12. Nicollian, E.H. and Brews, J.R., MOS Physics and Technology (Wiley, New York, 1982).Google Scholar
13. Hseih, B.-C. and Greve, D.W., J. Appl. Phys. 67, 2494 (1990).10.1063/1.345500Google Scholar
14. Suyama, S. et al. , IEEE Trans. Electron Devices, ED-34, 2124 (1987).Google Scholar
15. Ditizio, R.A. et al. , Appl. Phys. Lett. 56, 1140 (1990)Google Scholar
16. Fossum, J. et al. , IEEE Trans. Electron Devices, ED-32, 1878 (1985).Google Scholar
17. Mimura, A. et al. , IEEE Trans. Electron Devices, ED-36, 351 (1989).Google Scholar
18. Mealdn, D.B. et al. , Appl. Phys. Lett. 50, 1894 (1987).Google Scholar
19. Troxell, J.R. et al. , IEEE Electron Device Lett. EDL-7, 597 (1986).Google Scholar
20. Tavendale, A.J., Pearson, S.J. and Williams, A.A., Appl. Phys. Lett. 56, 949 (1990)Google Scholar