Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-07-03T07:19:15.854Z Has data issue: false hasContentIssue false

Growth of ZnSe Epitaxial Layers and ZnSe/ZnS Superlattices by Pulsed Laser Deposition

Published online by Cambridge University Press:  01 January 1992

Y. Rajakarunanayake
Affiliation:
Department of Physics and Astronomy, Univ. of Toledo, Toledo, OH 43606
Y. Luo
Affiliation:
Department of Physics and Astronomy, Univ. of Toledo, Toledo, OH 43606
B. T. Adkins
Affiliation:
Department of Physics and Astronomy, Univ. of Toledo, Toledo, OH 43606
A. Compaan
Affiliation:
Department of Physics and Astronomy, Univ. of Toledo, Toledo, OH 43606
Get access

Abstract

We report the successful growth of ZnSe and ZnSe/ZnS superlattices on GaAs by pulsed laser deposition. An XeCl excimer laser operated at 308 nm was used to ablate/evaporate Il-VI bulk targets in an ultra high vacuum enclosure. For typical growth temperatures in the range 350°–450°C we obtained epitaxial layers with excellent optical properties. The laser power and fluence were varied to produce growth rates in the range 0.1–1 Å/pulse. The photoluminescence of the pulsed laser deposited ZnSe layers showed dominant bound and free exciton features. The superlattice samples showed large blue shifts (∼400 meV) in the photoluminescence as the layer thicknesses were varied. These results are consistent with strong quantum confinement of the heavy holes in the ZnSe layers (valence band offset for ZnSe/ZnS ∼ 850±100 meV), while the electrons are not confined to either layer because of very small conduction band offsets Strong exciton photoluminescence exhibited by our samples indicates that pulsed laser deposition is a promising growth technique for the fabrication of iI-VI epitaxial layers and strained layer superlattices for visible light emitter applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Stutius, W., Appl. Phys. Lett. 33, 656 (1978); J. Cryst. Growth 59, 1 (1982).Google Scholar
2. Yao, T., Makita, Y., and Maekawa, S., J. Cryst. Growth 45, 309 (1978).Google Scholar
3. Park, R. M., J. Vac. Sci. Technol. A10(4), 701 (1992).Google Scholar
4. Kobayashi, M., Gunshor, R. L., Nurmikko, A. V., and Otsuka, N., Optoelectronics Devices and Technologies, 7(1), 1 (1992); Xie, W., Grillo, D. C., Gunshor, R. L., Kobayashi, M., Hua, G. C., Otsuka, N., Jeon, H., Ding, J. and Nurmikko, A. V., J. Vac. Sci. Technol B10(2), 921 (1992).Google Scholar
5. Wu, X. D., Inam, A., Venkatesan, T., Chang, C. C., Chase, E. W., Barboux, P., Tarascon, J. M., and Wilkens, B., Appl. Phys. Lett. 52, 754 (1988); Dijkkamp, D., Venkatesan, T., Wu, X. D., Shaheen, S. A., Jisrawi, N., Min-lee, Y. H., McLean, W. L., and Croft, M., Appl. Phys. Lett. 51, 619 (1987).Google Scholar
6. Namiki, A., Watabe, K., Fukano, H., Nishigaki, S., and Noda, T., J. Appl. Phys. 54(6), 3443 (1983); Singh, R. K. and Narayan, J., Phys. Rev. B 41(13), 8843 (1990); S. Tomoda, I. Kusunoki, and S. Matsumoto, Mass Spectros. 23, 133 (1975).Google Scholar
7. Kwok, H. S., Zheng, J. P., Witanachchi, S., Shi, L. and Shaw, D. T., Appl. Phys. Lett. 52, 1815 (1988); Kwok, H. S., Zheng, J. P., Witanachchi, S., Mattocks, P., Shi, L., Ying, Q. Y., Wang, X. W. and Shaw, D. T., Appl. Phys. Lett 52, 1095 (1988).Google Scholar
8. Compaan, A., Bhat, A., Tabory, C., Liu, S., Savage, M. E., Shao, M., Tsien, L. and Bohn, R. G., Proc. 22nd IEEE Photovoltaics Specialists Conf, -1991, p 957 (1992).Google Scholar
9.A. Aydinli, G. Contreras Puente, A. Bhat, Compaan, A. and Chan, A., J. Vac. Sci. Technol. A9(6), 3031 (1991); Compaan, A., Bhat, A., Tabory, C., Liu, S., Nguyen, M., Aydinli, A., Tsien, L. H., and Bohn, R. G., Solar Cells 30, 79 (1991).Google Scholar
10. Cheung, J. T. and Cheung, D. T., J. Vac. Sci. Technol. 21, 182 (1982).Google Scholar
11. Dubowski, J. J., Roth, A. P., Wasilewski, Z. R., and Rolfe, S. J., Appl. Phys. Lett. 59, 1591 (1991).Google Scholar
12. Gutowski, J., Presser, N., and Kudlek, G., Phys. Stat. Sol. A(120), 11 (1990).Google Scholar
13. Matthews, J. W. and Blakeslee, A. E., J. Cryst. Growth 27, 118 (1974).Google Scholar
14.K. Shahzad, Olego, D. J. and Cammack, D. A., Appl. Phys. Lett 52(17), 1416 (1988); Shahzad, K., Olego, D. J. and Van de Walle, C. G., Phys. Rev.B38, 1417 (1988).Google Scholar