Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-07-04T23:37:28.758Z Has data issue: false hasContentIssue false

Growth of Buried CoSi2 Layers in Si(100) by Molecular Beam Allotaxy

Published online by Cambridge University Press:  03 September 2012

S. Mantl
Affiliation:
Institut für Schicht- und Ionentechnik, KFA Jülich GmbH, D-52425 Jülich, Germany
H.L. Bay
Affiliation:
Institut für Schicht- und Ionentechnik, KFA Jülich GmbH, D-52425 Jülich, Germany
I. Michel
Affiliation:
Institut für Schicht- und Ionentechnik, KFA Jülich GmbH, D-52425 Jülich, Germany
S. Mesters
Affiliation:
Institut für Schicht- und Ionentechnik, KFA Jülich GmbH, D-52425 Jülich, Germany
H. Trinkaus
Affiliation:
Institut für Festkörperforschung
Get access

Abstract

Buried single crystalline CoSi2 layers in Si(100) have been grown using molecular beam allotaxy. In this paper, we investigated the diffusive interaction of two buried silicide precipitate layers, one with a small Co peak concentration of 10 at% and another one with 26 at%. Annealing causes first local coarsening in each layer, and then dissolution of the thinner precipitate layer. The accumulation of the Co atoms at the thicker layer is described by a simple model for the diffusional redistribution.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Mantl, S. and Bay, H.L., Appl. Phys. Lett. 61, 267 (1992)Google Scholar
2. Bay, H.L., Mantl, S. and Michel, I., Appl.Surf.Sci. 65/66, 697 (1993)CrossRefGoogle Scholar
3. Mantl, S., Michel, I., Guggi, D., Bay, H.L., Mesters, S., Appl. Surf. Sci. (in press)Google Scholar
4. Skeide, O., Radermacher, K., Bay, H.L., Crecelius, G., Guggi, D., Gerthsen, D., Dieker, Ch., Mesters, S. and Mantl, S., Proc. Int. Conf. Formation of Semicond. Interfaces, Jülich (1993)Google Scholar
5. Tung, R.T., Eaglesham, D.J., Schrey, F. and Sullivan, J.P., Mat. Res. Soc. Symp. Proc. 281, (1993)Google Scholar
6. White, A.E., Short, K.T., Dynes, R.C., Gamo, J.P. and Gibson, J.M., Appl. Phys. Lett. 50, 95 (1987)CrossRefGoogle Scholar
7. Stephens, K.G., Reeson, K.J., Sealy, B.J., Gwilliam, R.M. and Henmuent, P.L.F., Nucl. Instr. Meth. B 50, 368 (1990)Google Scholar
8. Manti, S., Mater. Sci. Rep. 8, 1 (1992)CrossRefGoogle Scholar
9. Ommen, A.H. van, Bulle-Lieuwma, C.W.T., Ottenheim, J.J.M. and Theunissen, A.M.L., J. Appl. Phys. 67, 1767 (1990)CrossRefGoogle Scholar
10. Bulle-Lieuwma, C.W.T., Ommen, A. H. van, Homstra, J., Aussems, C. N. A. M., J. Appl. Phys. 71, 2211 (1992)Google Scholar
11. Trinkaus, H. and Mantl, S., Nucl. Instr. Meth. B80/81, 862 (1993)CrossRefGoogle Scholar
12. Lifshitz, I. M. and Slyozov, V.V., J. Phys. Chem. Solids 19, 35 (1961) Wagner, C., Z. Elektrochem. 65, 581 (1961)Google Scholar