Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T17:26:07.435Z Has data issue: false hasContentIssue false

Grain Structure and Electromigration Testing of Deep Sub- Micrometer Cu Interconnects

Published online by Cambridge University Press:  15 February 2011

Richard Frankovic
Affiliation:
Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN 46556
Gary H. Bernstein
Affiliation:
Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN 46556
Get access

Abstract

Copper interconnect test stripes were fabricated by electron-beam lithography, evaporation and lift-off to linewidths as small as 140 nm. Grain structure in the as-deposited films exhibited smaller standard deviation than long-term annealed films. Grain growth during the anneal step increased maximum grain size by 2.5 times. Electromigration lifetime testing indicated these interconnects have 2-4 orders-of-magnitude greater normal-use lifetimes than large cross-sectional area, large-grain Al-alloy interconnects.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Black, J. R., Proc. IEEE, 57, 1587, (1969).Google Scholar
2 Ohmi, T., Hoshi, T., Sakai, S., Sakaibara, K., Imai, S., and Shibata, T., J. Electrochem. Soc.. 140, 1131 (1993).Google Scholar
3 Weast, R. C., Handbook of Chemistry and Physics, 58th ed. (CRC, Cleveland, 1978) p. B-l19.Google Scholar
4 Schwartz, G. C. and Schaible, P. M., J. Electrochem. Soc., 130, 1777 (1983).Google Scholar
5 Arita, Y., Awaya, N., Ohno, K., and Sato, M., MRS Bulletin, Aug. 1994, 68.Google Scholar
6 Dalil, H. M., Joshi, R. V., Rathore, H. S., and Fillipi, R., Tech. Digest of IEDM, 1993. 273.Google Scholar
7 Misawa, N., Ohba, T., and Yagi, H., MRS Bulletin, Aug. 1994, 63.Google Scholar
8 Pai, P. and Ting, C. H., IEEE Electron Device Lett., 10, 423, (1989).Google Scholar
9 Tao, J., Cheung, N. W., and Hu, C., IEEE Electron Device Lett., 14, 249, (1993).Google Scholar
10 Walsh, L. H., Feilchenfeld, N. B., and Schwarz, J. A., J. Vac. Sci. Technol. A, 10, 1493, (1992).Google Scholar
11 Bazan, G. and Bernstein, G. H., J. Vac. Sci. Technol. A, 11, 1745, (1993).Google Scholar
12 Bernstein, G. H., Hill, D. A., and Liu, P., J. Appl. Phys., 71, 4066, (1992).Google Scholar
13 Sanchez, J. E. Jr., McKnelly, L. T., and Morris, J. W. Jr.; J. Appl. Phys., 72, 3201, (1992).Google Scholar
14 Thompson, C. V. and Cho, J., IEEE Electron Device Lett., 7, 667, (1986).Google Scholar
15 Tu, K. N. and Lau, S. S., in Thin Films: Interdiffusion and Reactions, edited by Poate, J. M., Tu, K. N. and Mayer, J. W. (Wiley, New York, 1978) pp. 81106.Google Scholar
16 Iyer, S. S. and Wong, C. Y., J. Appl. Phys., 57, 4594, (1985).Google Scholar
17 Tu, K-N., Mayer, J. W., and Feldman, L. C., Electronic Thin Film Science for Electrical Engineers and Material Scientists, (Macmillan Publishing Company, New York, 1992), p.370.Google Scholar
18 Gardner, D. S., Michalka, T. L., Saraswat, K. C., Barbee, T. W. Jr., McVittie, J. P., and Meindl, J. D., IEEE Trans. Electron Devices, 32, 174, (1985).Google Scholar
19 Park, C. W. and Vook, R. W., Appl. Phys. Lett., 59, 175, (1991).Google Scholar
20 Frankovic, R. and Bernstein, G. H., presented at the 1994 March meeting of the American Physical Society, Pittsburg, PA, 1994 (unpublished).Google Scholar
21 Vaidya, , Fraser, D. B. and Lindenberger, W. S., J. Appl. Phys., 51, 4475, (1980).Google Scholar
22 Iyer, and Ting, C-Y., IEEE Trans. Electron Dev., 31, 1468, (1984).Google Scholar