Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-23T17:04:23.388Z Has data issue: false hasContentIssue false

Gas sensors based on semiconductor oxides: basic aspects onto materials and working principles

Published online by Cambridge University Press:  01 February 2011

Alessio Giberti
Affiliation:
INFM- Dipartimento di Fisica, Università di Ferrara, Via del Paradiso 12, 44100 Ferrara, Italy
Vincenzo Guidi
Affiliation:
INFM- Dipartimento di Fisica, Università di Ferrara, Via del Paradiso 12, 44100 Ferrara, Italy
Cesare Malagù
Affiliation:
INFM- Dipartimento di Fisica, Università di Ferrara, Via del Paradiso 12, 44100 Ferrara, Italy
Beatrice Vendemiati
Affiliation:
INFM- Dipartimento di Fisica, Università di Ferrara, Via del Paradiso 12, 44100 Ferrara, Italy
Giuliano Martinelli
Affiliation:
INFM- Dipartimento di Fisica, Università di Ferrara, Via del Paradiso 12, 44100 Ferrara, Italy
Get access

Abstract

The properties of the most important semiconductor oxides for gas sensing, such as SnO2, TiO2, WO3 and their modifications due to ion-addition or to catalyzers, have been reviewed. The oxide powders, synthesized via wet chemical routes, have been characterized both as dispersed powders and as sintered films. Deposition of thick film gas sensors was carried out through screen-printing technology. They have been studied comparing the electrical behavior under identical environmental conditions. Potential barrier heights have been measured via stimulated temperature measurements and density of ionized donors obtained via Hall Effect. A theoretical model has been developed to justify the size dependent behavior of nanocrystalline oxides.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Seiyama, T., Kato, A., Fulishi, K. and Nagatani, M., Anal. Chem., 34, 1502 (1962).Google Scholar
2. Taguchi, N., Jpn. Patent, 4538200 (1962).Google Scholar
3. Taguchi, N., UK Patent, 1280809(1970).Google Scholar
4. Kobayashi, T., Haruta, M., Sano, H. and Natane, M., Sensors and Actuators, 13, 339 (1988).Google Scholar
5. Hykaway, N., Sears, W.M., Frindt, R.F. and Morrison, S. R., Sensors and Actuators, 15, 105 (1988).Google Scholar
6. Morrison, S.R., Sensors and Actuators, 2, 329 (1982).Google Scholar
7. Heiland, G., Sensors and Actuators, 2, 343 (1982).Google Scholar
8. Moseley, P. T., Sensors and Actuators B, 6, 149 (1992).Google Scholar
9. Maekawa, T., Tamaki, J., Miura, N., Yamazoe, N., Chemistry Letters, 4, 639 (1992).Google Scholar
10. Matsuura, Y., Matsushima, S., Sakamoto, M., and Sadaoka, Y., J. Mater. Chem. 3, 767 (1993).Google Scholar
11. Tamaki, J., Zhang, Z, Fujimori, K., Akiyama, M., Harada, T., Miura, N., Yamazoe, N., J. Electrochem. Soc., 141, 2207 (1994).Google Scholar
12. Carotta, M.C., Ferroni, M., Guidi, V., Martinelli, G., Advanced Materials, 11, 943 (1999).Google Scholar
13. Williams, D.E., Sensors and Actuators B, 57, 1 (1999)Google Scholar
14. Ivanovskaya, M., Kotsikau, D., Faglia, G., Nelli, P., Sensors and Actuators B, 96(3), 498 (2003).Google Scholar
15. McAleer, J.F., Moseley, P.T., Norris, J.O.W. and Williams, D. E., J. Chem. Soc. Faraday Trans. 1, 83, 1323 (1987).Google Scholar
16. Yamazoe, N., Sensors and Actuators B, 5, 7 (1991).Google Scholar
17. Tournier, G., Pijolat, C., Lalauze, R. and Patissier, B., Sensors and Actuators B, 26–27, 24 (1995).Google Scholar
18. Shimizu, Y., Maekawa, T., Nakamura, Y. and Egashira, M., Sensors and Actuators B, 46, 163 (1998).Google Scholar
19. Labeau, M., Gautheron, B., Delabouglise, G., Peña, J., Ragel, V., Varela, A., Román, J., Martínez, J., González-Calbet, J. M. and Vallet-Regí, M., Sensors and Actuators B, 15–16, 379 (1993).Google Scholar
20. Cabot, A., Vilà, A., and Morante, J.R., Sensors and Actuators B, 84, 12 (2002).Google Scholar
21. Chiorino, A., Ghiotti, G., Prinetto, F., Carotta, M.C., Gnani, D. and Martinelli, G., Sensors and Actuators B, 58 338 (1999).Google Scholar
22. Barsan, N., Schweizer-Berberich, M., Göpel, W., Fresenius J Anal Chem, 365, 287 (1999).Google Scholar
23. Williams, G. and Coles, G.S.V., MRS Bulletin, 24 (6), 25 (1999).Google Scholar
24. Diéguez, A., Romano-Rodríguez, A., Morante, J. R., Kappler, J., Bârsan, N. and Göpel, W., Sensors and Actuators B, 60, 125 (1999).Google Scholar
25. Sakai, G., Baik, N., Miura, N., Yamazoe, N., Sens. Actuators B, 77, (2001) 116121.Google Scholar
26. Ruiz, A.M., Dezanneau, G., Arbiol, J., Cornet, A., Morante, J.R., Chem. Mater., 16, 862 (2004).Google Scholar
27. Martinelli, G., Carotta, M.C., Ghiotti, G. and Traversa, E., MRS Bulletin, 24 (6), 30 (1999).Google Scholar
28. Pijolat, C., Pupier, C., Sauvan, M., Tournier, G. and Lalauze, R., Sensors and Actuators B, 59, 195 (1999).Google Scholar
29. Carotta, M.C., Martinelli, G., Crema, L., Gallana, M., Merli, M., Ghiotti, G. and Traversa, E., Sensors and Actuators B, 68, 1 (2000)Google Scholar
30. Carotta, M.C., Martinelli, G., Crema, L., Malagù, C., Merli, M., Ghiotti, G. and Traversa, E., Sensors and Actuators B, 76, 336 (2001).Google Scholar
31. Chiorino, A., Ghiotti, G., Carotta, M.C., and Martinelli, G., Sensors and Actuators B, 44, 474 (1997).Google Scholar
32. Cirera, A., Diéguez, A., Diaz, R., Cornet, A., Morante, J.R., Sensors and Actuators B, 58, 360 (1999).Google Scholar
33. Guidi, V., Blo, M., Butturi, M.A., Carotta, M.C., Galliera, S., Giberti, A., Malagù, C., Martinelli, G., Piga, M., Sacerdoti, M., Vendemiati, B., Sensors and Actuators B, 100, 277 (2004).Google Scholar
34. Sahma, T., Mädler, L., Gurlo, A., Barsan, N., Pratsinis, S.E., Weimar, U., Sensors and Actuators B, 98, 148 (2004).Google Scholar
35. Traversa, E., Nunziante, P., Sakamoto, M., Sadaoka, Y., Carotta, M.C. and Martinelli, G., Journal of Material Research, 13, N° 5, 1335 (1998).Google Scholar
36. Comini, E., Faglia, G., Sberveglieri, G., Pan, Zhengwei, and Wang, Zhong L., Applied Physics Letters, 81(10), 1869 (2002).Google Scholar
37. Guidi, V., Carotta, M.C., Ferroni, M., Martinelli, G., Sacerdoti, M., Journal of Physical Chemistry B, 107, 120 (2003).Google Scholar
38. Ruiz, A.M., Dezanneau, G., Arbiol, J., Cornet, A., Morante, J.R., Chem. Mater., 16, 862 (2004).Google Scholar
39. Bonini, N., Carotta, M.C., Guidi, V., Malagù, C., Martinelli, G., Paglialonga, L., and Sacerdoti, M., Sensors and Actuators B, 68, 274 (2000).Google Scholar
40. Traversa, E., Di Vona, M.L., Licoccia, S., Sacerdoti, M., Carotta, M.C., Crema, L., and Martinelli, G., Journal of Sol-Gel Science and Technology, 22, 167 (2001).Google Scholar
41. Guidi, V., Butturi, M.A., Carotta, M.C., Cavicchi, B., Ferroni, M., Malagù, C., Martinelli, G., Vincenzi, D., Sacerdoti, M., Zen, M. Sensors and Actuators B, 84, 72 (2002).Google Scholar
42. Malagù, C., Guidi, V., Stefancich, M., Carotta, M.C., and Martinelli, G., Journal of Applied Physics, 91, n.2, 808 (2002).Google Scholar
43. Malagù, C., Guidi, V., Carotta, M.C., Martinelli, G., Applied Physics Letters, 84 (21), 4158 (2004).Google Scholar
44. Guidi, V., Blo, M., Butturi, M.A., Carotta, M.C., Galliera, S., Giberti, A., Malagù, C., Martinelli, G., Piga, M., Sacerdoti, M., Vendemiati, B., Sensors and Actuators B, 100, 277 (2004).Google Scholar
45. Blo, M., Carotta, M.C., Galliera, S., Gherardi, S., Giberti, A., Guidi, V., Malagù, C., Martinelli, G., Sacerdoti, M., Vendemiati, B., Zanni, A., Sensors and Actuators B, 103, 213 (2004).Google Scholar
46. Vincenzi, D., Butturi, M.A., Guidi, V., Carotta, M.C., Martinelli, G., Guarnieri, V., Brida, S., Margesin, B., Giacomozzi, F., Zen, M., Giusti, D., Soncini, G., Vasiliev, A.A., Pisliakov, A.V., Journal of Vacuum. Science and Technology B, 18, 2441 (2000).Google Scholar
47. Radwcka, M., Zakrzewska, K., Rekas, M., Sensors and Actuators B, 47, 194 (1998).Google Scholar
48. Lee, B.I. and Pope, E.J., ed., Chemical Processing of Ceramics (Marcel Dekker, New York, 1994).Google Scholar
49. Clifford, P.K. and Tuma, D.T., Sensors and Actuators, 3, 255 (1982/1983).Google Scholar
50. Lantto, V., Romppainen, P. and Leppävuori, S., Sensors and Actuators, 14, 149 (1988).Google Scholar
51. Carotta, M.C., Dallara, C., Martinelli, G., Passari, L. and Camanzi, A., Sensors and Actuators B, 3, 191 (1991).Google Scholar
52. Martinelli, G. and Carotta, M.C., Sensors and Actuators B, 23, 157 (1995).Google Scholar
53. Blo, M., Thesis, University of Ferrara (2002).Google Scholar
54. Demetry, C. and Shi, X., Solid State Ionics, 118, 271 (1999).Google Scholar
55. Tang, H., Prasad, K., Sanjinés, R., and Lévy, F., Sensors and Actuators B, 26–27, 71 (1995).Google Scholar
56. Sharma, R.K., Bhatnagar, M.C., Sharma, G.L., Sensors and Actuators B, 46, 194 (1998).Google Scholar
57. Akhtar, M.K., Pratsinis, S.E. and Mastrangelo, S.V.R., J. Am. Ceram. Soc., 75, 3408 (1992).Google Scholar
58. Tomchenko, A.A., Khatko, V.V., Emilianov, I.L., Sensors and Actuators B, 46, 8 (1998).Google Scholar
59. Solis, J., Saukko, S., Kish, L., Granqvist, C., Lantto, V., Thin Solid Films, 391, 255 (2001).Google Scholar
60. Wang, X., Miura, N., Yamazoe, N., Sensors and Actuators B, 66, 74 (2000).Google Scholar
61. Ferroni, M., Guidi, V., Martinelli, G., Sberveglieri, G., J. Mater. Res., 12, 793 (1997).Google Scholar
62. Lantto, V., Romppainen, P., Leppävuori, S., Sensors and Actuators, 14, 149 (1988).Google Scholar
63. Chiorino, A., Ghiotti, G., Prinetto, F., Carotta, M.C., Malagù, C., Martinelli, G., Sensors and Actuators B, 78, 89 (2001).Google Scholar
64. Bardeen, J., Phys. Rev., 71, 717 (1947).Google Scholar