Hostname: page-component-77c89778f8-sh8wx Total loading time: 0 Render date: 2024-07-16T13:21:11.807Z Has data issue: false hasContentIssue false

First-Principles Total Energy Study of NbCr2 + V Laves Phase Ternary System

Published online by Cambridge University Press:  10 February 2011

Alim Ormeci
Affiliation:
Koc University, Istinye 80860, Istanbul, Trkey
S. P. Chen
Affiliation:
Los Alamos National Loratory Los, Alamos, New Mexico 87545, USA
John M. Wills
Affiliation:
Los Alamos National Loratory Los, Alamos, New Mexico 87545, USA
R. C. Albers
Affiliation:
Los Alamos National Loratory Los, Alamos, New Mexico 87545, USA
Get access

Abstract

The C15 NbCr2 + V Laves phase ternary system is studied by using a first-principles, self-consistent, full-potential total energy method. Equilibrium lattice parameters, cohesive energies, density of states and formation energies of substitutional defects are calculated. Results of all these calculations show that in the C15 NbCr2 + V compounds, V atoms substitute Cr atoms only.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wernick, J.H., in Intermetallic Compounds, ed. Westbrook, J.H. (John Wiley & Sons, Inc., New York, 1967).Google Scholar
2. Fleischer, R., J. Mater. Sci. 22, 2281 (1987).CrossRefGoogle Scholar
3. Takeyama, M. and Liu, C.T., Mater. Sci. Eng., A 132, 61 (1991).CrossRefGoogle Scholar
4. Thoma, D.J. and Perepezko, J.H., Mater. Sci. and Eng. A 156, 97 (1992).CrossRefGoogle Scholar
5. Rowe, R.G., Skelly, D.W., Larsen, M., Heathcote, J., Odette, G.R., and Lucas, G.E., Scripta Met. et Mater. 31, 1487 (1994).CrossRefGoogle Scholar
6. Yoshida, M., Takasugi, T., and Hanada, S., in High Temperature Intermetallic Alloys VI, edited by Horton, J., Baker, I., Hanada, S and Noebe, R.D. (Mater. Res. Soc. Proc. Vol. 364, Pittsburgh, PA, 1995), p. 1395.Google Scholar
7. Chu, F., He, Y., Thoma, D.J. and Mitchell, T.E., Scripta Met. et Mater. 33, 1295 (1995).CrossRefGoogle Scholar
8. F Chu, Sob, M., Siegl, R., Mitchell, T. E., Pope, D. P., Chen, S. P., Phil. Mag. B 70, 881 (1994).Google Scholar
9. Chu, F., Thoma, D. J., He, Y, Mitchell, T. E., Chen, S. P., Perepezko, J., in High Temperature Structural Intermetallic Alloys – VI, edited by Horton, J., Baker, I., Hanada, S and Noebe, R.D. (Mater. Res. Soc. Proc. 364, Pittsburgh, PA, 1995), p. 1089; F Chu, T. E. Mitchell, S. P. Chen, M. Sob, R. Siegl, and D. P. Pope, ibid. p. 1389.Google Scholar
10. Chu, F., Ormeci, A. H., Mitchell, T. E., Wills, J. M., Thoma, D. J., Albers, R. C., and Chen, S. P., Phil. Mag. Lett. 72, 147 (1995).CrossRefGoogle Scholar
11. Ormeci, Alim, Chu, F., Wills, J.M., Mitchell, T.E., Albers, R.C., Thoma, D.J. and Chen, S.P., Phys. Rev. B 54, 12753 (1996).CrossRefGoogle Scholar
12. Ormeci, Alim, Chu, F., Wills, J.M., Chen, S.P., Albers, R.C., Thoma, D.J. and Mitchell, T.E. in High Temperature Structural Intermetallic Alloys – VII, edited by Koch, C.C., Liu, C.T., Stoloff, N.S. and Wanner, A. (Mater. Res. Soc. Proc. 460, Pittsburgh, PA, 1997), p. 623.Google Scholar
13. Chu, F., Thoma, D.J., Kotula, P.G., Gerstl, S., Mitchell, T.E., Anderson, I.M. and Bentley, J., Acta ater. 46, 1759 (1998).Google Scholar
14. Chu, F., Zhu, Q., Thoma, D.J., and Mitchell, T.E., Phil. Mag. A 78, 551 (1998).CrossRefGoogle Scholar
15. Kotula, P.G., Anderson, I.M., Chu, F., Thoma, D.J., Bentley, J. and Mitchell, T.E. in High Temperature Structural Intermetallic Alloys – VII, edited by Koch, C.C., Liu, C.T., Stoloff, N.S. and Wanner, A. (Mater. Res. Soc. Proc. 460, Pittsburgh, PA, 1997), p. 617.Google Scholar
16. Thoma, D.J., Chu, F., Peralta, P., Kotula, P.G., Chen, K.C. and Mitchell, T.E., Mat. Sci. and Eng. A 239–240, 251 (1997).CrossRefGoogle Scholar
17. Zhu, J.H., Liaw, P.K. and Liu, C.T., Mat. Sci. and Eng. A 239–240, 260 (1997).CrossRefGoogle Scholar
18. Kotula, P.G., Carter, C.B., Chen, K.C., Thoma, D.J., Chu, F. and Mitchell, T.E., Scripta Mat. 39, 619 (1998).CrossRefGoogle Scholar
19. Thoma, D.J. (unpublished).Google Scholar
20. Chu, F. and Pope, D.P., Mat. Sci and Eng. A 170, 39 (1993).CrossRefGoogle Scholar
21. Livingston, J.D. and Hall, E.L., J. Mater. Res. 5, 5 (1990).CrossRefGoogle Scholar
22. Chu, F, Mitchell, T. E., Chen, S.P., Sob, M., Siegl, R. and Pope, D. P., Jour. of Phase Equilibria 18, 536 (1997).CrossRefGoogle Scholar
23. Chu, F., Lu, Y -C., Kotula, P.G., Mitchell, T.E. and Thoma, D.J., Phil. Mag. A 77, 941 (1998).CrossRefGoogle Scholar
24. Hohenberg, P. and Kohn, W., Phys. Rev. 136B, 864 (1964); W. Kohn and L.J. Sham, Phys. Rev. 140A, 1133 (1965).CrossRefGoogle Scholar
25. Wills, J. M., unpublished; Wills, J. M. and Cooper, B. R., Phys. Rev. B 36, 3809 (1987); D. L. Price and B. R. Cooper, Phys. Rev. B 39, 4945 (1989).CrossRefGoogle Scholar
26. Hedin, L. and Lundqvist, B.I., J. of Phys. C 4, 2064 (1971).CrossRefGoogle Scholar
27. Moruzzi, V. L., Janak, J. F., Williams, A. R., Calculated Electronic Properties of Metals (Pergamon Press, New York, 1978).Google Scholar
28. Froyen, S., Phys. Rev. B 39, 3168 (1989).CrossRefGoogle Scholar
29. Murnaghan, F. D., Proc. Nat. Acad. Sci. USA 30, 244 (1944); F Birch, J. Geophys. Res. 57, 227 (1952).CrossRefGoogle Scholar