Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-17T16:11:10.147Z Has data issue: false hasContentIssue false

Fabrication of Location-Controlled Silicon Crystal Grains by Combining Excimer Laser Irradiation with Nanometer-sized A-Si

Published online by Cambridge University Press:  01 February 2011

Chun-Chien Tsai
Affiliation:
[email protected], Electronics, Electronics Engineering, 1001 Ta Hsueh Rd., Hsinchu, 300, Taiwan R.O.C., Hsinchu, N/A, 300, Taiwan
Ting-Kuo Chang
Affiliation:
[email protected], Toppoly Optoelectronics Corporation, Miao-Li, N/A, N/A, Taiwan
Hsiu-Hsin Chen
Affiliation:
[email protected], National Chiao Tung University, Electronics Engineering, 1001 Ta Hsueh Rd, Hsinchu, N/A, 300, Taiwan
Bo-Ting Chen
Affiliation:
[email protected], National Chiao Tung University, Electronics Engineering, 1001 Ta Hsueh Rd, Hsinchu, N/A, 300, Taiwan
Huang-Chung Cheng
Affiliation:
[email protected], National Chiao Tung University, Electronics Engineering, 1001 Ta Hsueh Rd, Hsinchu, N/A, 300, Taiwan
Get access

Abstract

In this paper, location-controlled Silicon crystal grains are fabricated by a novel excimer laser crystallization method. An array of 1.8-μm-sized disk-liked grains are formed by this method, and the high-performance n-channel LTPS TFTs with field-effect-mobility reaching 308 cm2/Vs can be fabricated owing to the artificially-controlled lateral grain growth. This position-manipulated Silicon grains are essential to high performance and good uniformity thin film transistors.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kim, H. J., Kim, D., Lee, J. H., Kim, I. G., Moon, G. S., Huh, J. H., Hwang, J. W., Joo, S. Y., Kim, K. W., and Souk, J. H., in SID Symposium Digest 30, p. 184187 (1999).Google Scholar
2. Park, Y. I., Ahn, T. J., Kim, S. K., Park, J. Y., Yoo, J. S., Kim, C. Y., and Kim, C. D., in SID Symposium Digest 34, p. 384 (2001).Google Scholar
3. Hara, A., Takeuchi, F., and Sasaki, N., J. Appl. Phys., 91, 708 (2002).Google Scholar
4. Im, J. S., Kim, H. J., and Thompson, M. O., Appl. Phys. Lett., 63, 1969 (1993).Google Scholar
5. Im, J. S. and Kim, H. J., Appl. Phys. Lett., 64, 2303 (1994).Google Scholar
6. Sposili, R. S. and Im, J. S., Appl. Phys. Lett., 69, 864 (1996).Google Scholar
7. Crowder, M. A., Carey, P. G., Smith, P. M., Sposili, R. S., Cho, H. S., and Im, J. S., IEEE Electron Device Lett., 19, 306 (1998).Google Scholar
8. Oh, C. H., Ozawa, M. and Matsumura, M., Jpn. J. Appl. Phys. Part 2, 37, L492 (1998).Google Scholar
9. Oh, C. H. and Matsumura, M., IEEE Electron Device Lett., 22, 20, (2001).Google Scholar
10. Wilt, Paul Ch. van der, Dijk, B. D. van, Bertens, G. J., Ishihara, R., and C. Beenakker, I. M., Appl. Phys. Lett., 79, 1819 (2001).Google Scholar
11. Ishihara, R., Wilt, Paul Ch. van der, Dijk, B. D. van, Metselaar, J. W. and C. Beenakker, I. M., in Poly-Silicon Thin Film Transistor Technology and Applications in Displays and Other Novel Technology Areas, Apostolos Voutsas, T., Editor, Vol. 5004, p. 10, SPIE Proceeding Series (2003).Google Scholar
12. Kim, C. H., Song, I. H., Nam, W. J., and Han, M. K., IEEE Electron Device Lett., 23, 325 (2002).Google Scholar
13. Song, I. H., Kang, S. H., Nam, W. J., and Han, M. K., IEEE Electron Device Lett., 24, 580 (2003).Google Scholar
14. Hara, A., Takei, M., Takeuchi, F., Suga, K., Yoshino, K., Chida, M., Kakehi, T., Ebiko, Y., Sano, Y. and Sasaki, N., Jpn. J. Appl. Phys. Part 1, 43, 1269 (2004).Google Scholar
15. Tai, M., Hatano, M., Yamaguchi, S., Noda, T., Park, S. K., Shiba, T., and Ohkura, M., IEEE Trans. Electron Devices, 51, 934 (2004).Google Scholar
16. Lee, M. H., Moon, S. J., Hatano, M., Suzuki, K., and Grigoropoulos, C. P., J. Appl. Phys., 88, 4994 (2000).Google Scholar