No CrossRef data available.
Published online by Cambridge University Press: 16 February 2012
By systematically altering the number and position of phenylalanine and carboxylate groups on a series of hydrogelators containing a naphthalene motif, we evaluated the correlation of molecular structures, self-assembly, and the rheological properties of the hydrogels. The storage moduli of the hydrogels decrease with the increase of the number of phenylalanine or with the insertion of a cysteine residue, and the effect of the carboxylic group on the rheological properties depends on the backbone of the hydrogelators. Transmission electron microscopy shows that these hydrogelators self-assemble in water to form nanofibers and result in threedimensional networks. Circular dichroism experiment indicates the hydrogelators self-assemble to form β-sheet-like structure within the nanofibers. This work suggests that control of the synergy of hydrogen bonding and aromatic-aromatic interactions may offer a feasible way to modulate the rheological properties of molecular hydrogels consisting of small molecules.