Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-29T07:45:56.943Z Has data issue: false hasContentIssue false

Epitaxial Growth of ZnSe on S-Passivated GaAs (100) Substrate

Published online by Cambridge University Press:  21 February 2011

W. Z. Cai
Affiliation:
Surface Physics Laboratory and Fudan T. D. Lee Physics Laboratory, Fudan University, Shanghai 200433, China
Z. S. Li
Affiliation:
Surface Physics Laboratory and Fudan T. D. Lee Physics Laboratory, Fudan University, Shanghai 200433, China
J. Wang
Affiliation:
Surface Physics Laboratory and Fudan T. D. Lee Physics Laboratory, Fudan University, Shanghai 200433, China
Aziz Ul-Haq Qureshi
Affiliation:
Surface Physics Laboratory and Fudan T. D. Lee Physics Laboratory, Fudan University, Shanghai 200433, China
Xun Wang
Affiliation:
Surface Physics Laboratory and Fudan T. D. Lee Physics Laboratory, Fudan University, Shanghai 200433, China
Get access

Abstract

A new sulfur passivation technique for GaAs surface by using S2Cl2 instead of (NH4)2Sx has been developed. Auger electron spectroscopy verifies the passivated surface is almost completely free of oxygen. The results of X-ray photoelectron spectroscopy indicate a relatively strong bonding between S and substrate atoms. A clean surface can be achieved by annealing in vacuum at 600°C. ZnSe thin films grown by hot wall epitaxy on S2Cl2 passivated GaAs show improved crystalline quality compared with those treated by conventional method, as indicated by Raman scattering measurements.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Krost, A., Richter, W., Zahn, D. R. T., Hingerl, K. and Sitter, H., Appl. Phys. Lett. 57, 1981 (1990).Google Scholar
2 Li, D., Gonsalves, M., Otsuka, N., Qiu, J., Kobayashi, M. and Gunshor, R. L., Appl. Phys. Lett. 57, 449 (1990).Google Scholar
3 Gunshor, R. L., Kobayashi, M., Otsuka, N. and Nurmikko, A. V., J. Cryst. Growth, 115, 652 (1991).Google Scholar
4 Guha, S., Munekata, M., LeGoues, F. K. and Chang, L. L., Appl. Phys. Lett. 60, 3220 (1992).Google Scholar
5 Li, Z. S., Cai, W. Z., Hou, X. Y., Su, R. Z., Ding, X. M. and Xun, Wang, to be published.Google Scholar
6 Spindt, C. J., Liu, D., Miyano, K., Meissner, P. L., Chiang, T. T., Kendelewiwz, T., Lindau, I. and Spicer, W. E., Appl. Phys. Lett. 55, 861 (1989).Google Scholar
7 Loudon, R., Adv. Phys., 13, 423 (1964).Google Scholar
8 Hingerl, K. and Sitter, H., J.Cryst. Growth, 101, 180 (1990).Google Scholar
9 Pages, O., Renucci, M., Briot, O., Tempier, N. and Aulombard, R. L., J. Cryst. Growth, 107, 670 (1991).Google Scholar
10 Wang, J., Yao, W. H., Wang, J. B., Lu, H. Q., Sun, H. H., Wang, X. and Pang, Z. L., Appl. Phys. Lett. 62, 2845 (1993)Google Scholar