Published online by Cambridge University Press: 01 February 2011
A series of four a Si,Ge:H alloy samples with Ge fractions near 30 at.% were deposited by hot-wire CVD (HWCVD) using a Ta filament maintained at 1800oC. During film growth, the level of oxygen contamination was varied from less than 1019 cm−3 to roughly 5 × 1020 cm−3 using a controlled air-leak. The electronic properties of these films were then characterized using transient photocapacitance (TPC) and transient photocurrent (TPI) spectroscopy, as well as the drive-level capacitance profiling (DLCP) techniques. We observed an unexpected systematic improvement of the electronic properties of these HWCVD a Si,Ge:H with increasing oxygen impurity level, which was reflected by a decrease in the deduced Urbach energies. Comparing these with films co-deposited on stainless-steel versus p+ c-Si substrates, we found significantly better electronic properties in the latter case. Comparisons of the TPC and TPI spectra indicated a very high level of hole collection, consistent with these narrow bandtail distributions.