Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-29T07:35:13.213Z Has data issue: false hasContentIssue false

The Effect of Ion Induced Damage on the Mechanical Properties of Zirconia

Published online by Cambridge University Press:  25 February 2011

E. L. Fleischer
Affiliation:
Materials Science and Engineering, Cornell University, Ithaca, NY, Corning Inc., Corning, NY.
W. Herd
Affiliation:
Materials Science and Engineering, Cornell University, Ithaca, NY, Corning Inc., Corning, NY.
T. L. Alford
Affiliation:
Materials Science and Engineering, Cornell University, Ithaca, NY, Corning Inc., Corning, NY.
P. Børgesen
Affiliation:
Materials Science and Engineering, Cornell University, Ithaca, NY, Corning Inc., Corning, NY.
P. Revesz
Affiliation:
Materials Science and Engineering, Cornell University, Ithaca, NY, Corning Inc., Corning, NY.
J. W. Mayer
Affiliation:
Materials Science and Engineering, Cornell University, Ithaca, NY, Corning Inc., Corning, NY.
Get access

Abstract

Microhardness measurements were carried out on ion implanted single crystal Y2O3 stabilized cubic ZrO2. Ions were implanted up to fluences of 3×1017 ions/cm2. Comparison of the Knoop micro-hardness values of ZrO2 implanted with various species over a range of fluences showed that the principle variable causing hardness changes for inert ion implantation is damage energy and not the ion fluence nor the ion species. For shallow inert ion implants, the hardness versus damage energy gives a unified plot. Hardnesses rise with increasing deposited damage energy to a value 15% higher than that of unimplanted zirconia. With additional damage the hardness drops to a value 15% lower than that of the unimplanted zirconia. Deep implants showed 50% increases in hardness and significant fracture toughness increases.

Friction and wear measurements of the shallow implants in a pin-on-disk assembly showed very different behavior for high dose versus unimplanted ZrO2. The unimplanted samples showed debris with an associated rise in friction. The implanted system showed much less debris and a constant value of friction even after 10,000 cycles.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 McHargue, C.J., International Metals Reviews 3 (2), 49 (1986).Google Scholar
2 McHargue, C. J., Defect and Diffusion Forum 57–58. 359–380 (1988).Google Scholar
3 Bull, S. J., Page, T. F., Nucl. Instrum. Methods in Phys. Res., BJ2, 91–95 (1988).Google Scholar
4 Farlow, G. C., White, C. W., McHargue, C. J., Sklad, P. S., Appleton, B. R., Nucl. Instrum. Methods in Phys. Res. BTia, 541546 (1985).Google Scholar
5 Lewis, M. B., Nucl. Instrum. Methods in Phys. Res.B7/8. 530534 (1985).Google Scholar
6 Naramoto, H., White, C. W., Williams, J. M., McHargue, C. J., Holland, O. W., Abraham, M.M., Appleton, B.R., J. Appl. Phys. 54 (2), 683698 (1983).Google Scholar
7 Bull, J., Page, T.F., J. Mat. Sci. 23., 42174230 (1988).Google Scholar
8 Hioki, T., Itoh, A., Noda, S., Doi, H., Kawamoto, J., Kamigaito, O., J. Mat. Sci. Letters 3, 10991101 (1984).Google Scholar
9 Christel, , Meunier, A., Heller, M., Torre, J. P., Peille, C.N., J. Biomed. Mat. Res. 22., 4561 (1989).Google Scholar
10 Lankford, J., Wei, W., Kossowsky, R., J. of Materials Science 22, 20692078 (1987).Google Scholar
11 Wei, W., Lankford, J., J. of Materials Science 22, 23872396 (1987).Google Scholar
12 Wei, W., Lankford, J., Kossowsky, R., Mat. Sci. Eng. 90, 307315 (1987).Google Scholar
13 Legg, K. L., Cochran, J. K. Jr., Solnick- Legg, H. F., Mann, X. L., Nucl. Instrum. Methods in Phys. Res. B7/8, 535540 (1985).Google Scholar
14 Burnett, P. J., Page, T. F., J. of Materials Science 12, 35243545 (1984).Google Scholar
15 Biersack, J. P., Haggmark, L. G., Nucl. Instrum. Methods in Phys. Res. 124, 257 (1980).Google Scholar
16 Doolittle, L. R., Nucl. Instrum. Methods in Phys. Res. B9, 344 (1985).Google Scholar
17 (ASTMC849-81).Google Scholar
18 McHargue, C. J., Farlow, G. C., White, C. W., Appleton, B. R., Angelini, P., Naramoto, H., Nucl. Instrum. Methods in Phys. Res. B10/11. 569573 (1987).Google Scholar
19 McHargue, C. J., Farlow, G. C., White, C. W., Williams, J. M., Appleton, B. R., Naramoto, H., Materials Science and Engineering 62, 123127 (1985).Google Scholar