Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-29T09:23:51.369Z Has data issue: false hasContentIssue false

Dissipative Effects of Vortex Movements in YBa2Cu3O7 Measured by Magnetothermal Effects

Published online by Cambridge University Press:  28 February 2011

Ch. Simon
Affiliation:
Groupe de Physique des Solides, Université Paris 7, Laboratoire 17 associé au Centre National de la Recherche Scientifique, 75251 Paris Cedex 05, France
I. Rosenman
Affiliation:
Groupe de Physique des Solides, Université Paris 7, Laboratoire 17 associé au Centre National de la Recherche Scientifique, 75251 Paris Cedex 05, France
L. Legrand
Affiliation:
Groupe de Physique des Solides, Université Paris 7, Laboratoire 17 associé au Centre National de la Recherche Scientifique, 75251 Paris Cedex 05, France
G. Collin
Affiliation:
Laboratoire de Physique des Solides, Bat 510, Université Paris sud, 91405 Orsay Cedex, France.
Get access

Abstract

We have measured the temperature and the magnetization of singlecrystalline YBaCuO samples in a variable magnetic field under quasi adiabatic conditions. By varying the sweep rate of the field, the thermal link to the bath, the size of the sample, the critical temperature and the sample temperature, we have measured the time dependence of the vortex relaxation (the penetration of the critical state, flux jumps, and the instability regime). This magnetothermal instability controls the value of the effective critical current.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Deutscher, G., private communication.Google Scholar
2 Anderson, P.W., Kim, Y.B., Rev. Mod. Phys. 36, 31 (1964).Google Scholar
3 Bean, C.P., Phys. Rev. Lett, 8, 250 (1962).Google Scholar
4 Koch, R.H., Foglietti, V., Gallagher, W.J., Goren, G., Gupta, A., Fisher, M.P.A., Phys. Rev. Lett. 63, 1511 (1989).Google Scholar
5 Yeshurun, Y., Malozemoff, A.P., Phys. Rev. Lett. 60, 2202 (1988).Google Scholar
6 Guillot, M., Potel, M., Gougeon, P., Noel, H., Levet, J.C., Chouteau, G., Tholence, J.L., Phys. Lett. A6, 363 (1988).Google Scholar
7 Xiaowen, C., Sunli, H., Sous St. Comm. 70, 1115 (1989).Google Scholar
8 Tinkham, M., Introduction to superconductivity. (R. Kriger, Malabar Florida, 1985), p180.Google Scholar
9 Gillon, B., Petigrand, D., private communication.Google Scholar
10 Zebouni, N.H., Ventakaram, A., Rao, G.N., Grenier, C.G., Reynolds, J.M., Phys. Rev. Lett. 13, 606 (1964).Google Scholar
11 Wipf, S.L., Phys. Rev. 161, 404 (1962).Google Scholar