Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-07-01T02:08:28.735Z Has data issue: false hasContentIssue false

Defect Reduction of Cvd-Grown Cubic SiC Epitaxial Films on Off-Axis Si(100) Substrates with a Novel Off-Direction.

Published online by Cambridge University Press:  28 February 2011

Katsuki Furukawa
Affiliation:
Central Research Laboratories, Corporate Research and Development Group, Sharp Corporation, 2613-1 Ichinomoto, Tenri, Nara 632, Japan
Yoshihisa Fujii
Affiliation:
Central Research Laboratories, Corporate Research and Development Group, Sharp Corporation, 2613-1 Ichinomoto, Tenri, Nara 632, Japan
Akira Suzuki
Affiliation:
Central Research Laboratories, Corporate Research and Development Group, Sharp Corporation, 2613-1 Ichinomoto, Tenri, Nara 632, Japan
Shigeo Nakajima
Affiliation:
Central Research Laboratories, Corporate Research and Development Group, Sharp Corporation, 2613-1 Ichinomoto, Tenri, Nara 632, Japan
Get access

Abstract

Monocrystalline cubic SiC (β -SiC) thin films with lower defect densities have been epitaxially grown by chemical vapor deposition on off-axis Si (100) substrates with off-directions different from the conventional 〈011〉. Stacking faults of β -SiC films are investigated by the electrolytic etching and SEM observation. The effects of off-direction deviated from 〈011〉 are examined for the first time. The off-angle is fixed at 2 degrees. We find a reduction in defect density with increasing deviation angle θ, of off-direction from [011] toward [011[ (θ = 0 - 45°). The defect density becomes one order of magnitude smaller than that of on-axis (100) substrates. A typical value of the stacking fault density is approximately 6 × 106 cm−2 on the substrate with θ = 30° (film thickness: 24μ m).

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ryan, C.E., Mat. Res. Bull. 4, S1 (1969).Google Scholar
2. Suzuki, A., Furukawa, K., Higashigaki, Y., Harada, S., Nakajima, S., and Inoguchi, T., J. Cryst. Growth 70, 287 (1984).10.1016/0022-0248(84)90275-6Google Scholar
3. Nishino, S., Powell, J.A., and Will, H.A., Appl. Phys. Lett. 42, 460 (1983).Google Scholar
4. Shibahara, K., Nishino, S., and Matsunami, H., J. Cryst. Growth 78, 538 (1986).10.1016/0022-0248(86)90158-2Google Scholar
5. Nutt, S.R., Smith, D.J., Kim, H.J., and Davis, R.F., Appl. Phys. Lett. 50, 203 (1987).Google Scholar
6. Powell, J.A., Hatus, L.G., Kuczmrski, M.A., Chorey, C.M., Cheng, T.T., and Pirouz, P., Appl. Phys. Lett. 51, 823 (1987).Google Scholar
7. Shigeta, M., Fujii, Y., Ogura, A. , Furukawa, Suzuki, A., and Nakajima, S., J. Cryst. Growth 93, 766 (1988).Google Scholar
8. Gottschalk, H., Patzer, G., and Alexander, H., Phys. Status Solidi A45, 207 (1978).10.1002/pssa.2210450125Google Scholar
9. Aspnes, D.E. and Ihm, J., J. Vac. Sci. Technol. B5, 939 (1987).Google Scholar
10. Akiyama, M., kawarada, Y. and Kaminishi, K., J. Cryst. Growth 68, 21 (1984).10.1016/0022-0248(84)90391-9Google Scholar
11. Morizane, K., J. Cryst. Growth 38, 249 (1977).10.1016/0022-0248(77)90305-0Google Scholar
12. Pirouz, P.,Ernst, F., and Cheng, T.T., in Heteroepitaxy on Silicon, edited by Choi, H.K., Hull, R., Ishiwara, H., and Nemanich, R.J. (Mater. Res. Soc. Proc. 116, Pittsburgh, PA, 1988) pp. 5770.Google Scholar
13. Kong, H.S., Wang, Y.C., Glass, J.T. and Davis, R.F., J. Mater. Res. 3, 521 (1988).Google Scholar
14. Shibahara, K., Nishino, S., and Mastunami, H., Appl. Phys. Lett. 50, 1888 (1987).10.1063/1.97676Google Scholar
15. Shigeta, M., Fujii, Y., Furukawa, K., Suzuki, A., and Nakajima, S., Appl. Phys. Lett. 55, 1522 (1989).Google Scholar
16. Brander, R.W., and Boughey, A.L., Brit.J. Appl. Phys. 18, 905 (1967).10.1088/0508-3443/18/7/304Google Scholar