Hostname: page-component-5c6d5d7d68-wtssw Total loading time: 0 Render date: 2024-08-20T06:26:32.287Z Has data issue: false hasContentIssue false

Current-voltage characteristics of high resistivity CdTe

Published online by Cambridge University Press:  21 February 2011

Y. Iwase
Affiliation:
Research and Development Group, Nikko Kyodo Co., Ltd. 3-17-35, Niizo-Minami, Toda, Saitama, 335, Japan
R. Ohno
Affiliation:
Research and Development Group, Nikko Kyodo Co., Ltd. 3-17-35, Niizo-Minami, Toda, Saitama, 335, Japan
M. Ohmori
Affiliation:
Research and Development Group, Nikko Kyodo Co., Ltd. 3-17-35, Niizo-Minami, Toda, Saitama, 335, Japan
Get access

Extract

Current-voltage characteristics of high resistivity CdTe, with consideration to Schottky barrier height at the contact and defect levels in the band gap were investigated by experimental and numerical simulation methods. From the electron injection investigation, the density of electron traps corresponded to the doped Cl concentration in the crystal. Numerical simulation of current-voltage characteristics was made based on Schockley Read Hall (SRH) statistics. In the low bias region, calculated characteristics were in fairly close agreement with the experimental results for Pt/CdTe/Pt diode. The electric field was not uniform along the biased direction and an almost neutral region was present in the vicinity of anode contact even when the bias was applied.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Scheiber, C. and Chambron, J., Nucl.Instr. and Meth. A322, 604(1992).Google Scholar
2 Glasser, F., Thomas, G., Cuzin, M. and Verger, L., Nucl.Instr. and Meth. A322, 619(1992).Google Scholar
3 Hage-Ali, M. and Siffert, P., Nucl.Instr.and Meth. A322, 313(1992).Google Scholar
4 Samimi, M., Biglari, B., Hage-Ali, M., Koebel, J.M. and Siffert, P., Nucllnstr. and Meth. A283, 243(1989).Google Scholar
5 Siffert, P., Hagi-Ali, M., Samimi, M. and , Biglari, Proc.Int.Conf.Phys.Tech.Compens.Semicond., Madras, 1985, Vol.1, pp 115.Google Scholar
6 Horio, K., Ikoma, T. and Yanai, H., IEEE. Trans.Elec.Dev. FD–33(9), 1242 (1986).Google Scholar
7 lwase, Y., Takamura, H., Urata, K. and Ohmori, M., Sensor and Actuators A34, 31(1992).Google Scholar
8 Ohmori, M., Iwase, Y. and Ohno, R., Mater.Sci.Engineer. B16, 283(1993).Google Scholar
9 Ponpon, J.P., Solid.State.Electom. 28(7), 689(1985).Google Scholar
10 lwase, Y., Funaki, M., Onozuka, A. and Ohmori, M., Nucl.lnstr. and Meth. A332, 628(1992).Google Scholar
11 Mancini, A.M., Manfredotti, C., Blasi, C.de., Miccocci, G. and Tepre, A., Rev de Phys.Appi. 12, 255(1977).Google Scholar
12 Graft, R., Dinan, J., Lee, U., Fischer, T., Ramsey, J., Golding, T. and Wilson, H., J.Vac.Sci.Technol. A7(2), 377 (1988).Google Scholar
13 Samimi, M., Biglari, B., Hagi-Ali, M., Koebel, J.M. and Siffert, P., Phys.Stat. Sol.,(a) 100, 251(1987).Google Scholar
14 Siffert, p., Rabin, B., Tabatabai, H.Y., Stuck, R., Nucl.Instr. and Meth. 150, 31(1978).Google Scholar