Hostname: page-component-5c6d5d7d68-wpx84 Total loading time: 0 Render date: 2024-08-27T22:33:53.349Z Has data issue: false hasContentIssue false

Crystal Quality and Orientation of Pulsed Laser Deposited Barium Titanate Thin Films

Published online by Cambridge University Press:  15 February 2011

J. Gottmann
Affiliation:
Lehrstuhl für Lasertechnik, RWTH Aachen, Steinbachstr. 15, D-52074 Aachen, Germany
T. Klotzbücher
Affiliation:
Lehrstuhl für Lasertechnik, RWTH Aachen, Steinbachstr. 15, D-52074 Aachen, Germany
B. Vosseler
Affiliation:
Lehrstuhl für Lasertechnik, RWTH Aachen, Steinbachstr. 15, D-52074 Aachen, Germany
E. W. Kreutz
Affiliation:
Lehrstuhl für Lasertechnik, RWTH Aachen, Steinbachstr. 15, D-52074 Aachen, Germany
Get access

Abstract

KrF excimer laser radiation (λ=248 nm, τ=25 ns) is used for pulsed laser deposition of BaTiO3 thin films on Pt/Ti/Si multilayer substrates. The processing gas atmosphere consists of O2 at typical pressures of p=10-3-5·10-1 mbar. The investigations concentrate on the influence of the substrate temperature and the kinetic energy of the film forming particles on the crystalline structure and orientation of the growing films.

X-ray diffraction measurements and polarization dependent micro Raman spectroscopy reveal oriented growth of the films with c-axis orientation normal to the substrate surface and [100] texture if the energy of the particles is > 60 eV, while at lower kinetic energies a [110] or [111] texture with partly a-axis orientation is preferred. The ferroelectricity and the dielectric constant of the films, as determined by polarization versus voltage (P-V) and capacitance versus voltage (C-V) impedance measurements, decreases with increasing kinetic energy of the film forming particles. This decrease of the dielectric properties correlates with the change of the preferred orientation and the crystalline quality of the films.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Gnade, B.E., Summerfelt, S.R., Crensaw, D., Science and Technology of Electroceramic Thin Films, NATO ASI E 284 373 (1995)Google Scholar
2. Moulson, A.J., Herbert, J.M., Electroceramics, Chapman and Hall, London 1990 Google Scholar
3. Roy, D., Krupanidhi, S.B., Appl. Phys. Lett. 61 2057 (1992)Google Scholar
4. Mertin, M., Offenberg, D., An, C.W., Wesner, D.A., Kreutz, E.W., Appl. Surf. Sci. 96–98 842 (1996)Google Scholar
5. Klotzbficher, T., Mergens, M., Husmann, A., Gottmann, J., Kreutz, E.W., Advanced Laser Technologies 1997, Limoges, France, Proc. SPIE, in pressGoogle Scholar
6. Gottmann, J., Klotzbücher, T., Kreutz, E.W., Advanced Laser Technologies 1997, Limoges, France, Proc. SPIE, in pressGoogle Scholar
7. Gottmann, J., Husmann, A., Klotzbticher, T., Kreutz, E.W., Surf. Coat. Technol., in pressGoogle Scholar
8. Lohse, O., Bolten, D., Grossmann, M., Waser, R., Hartner, W., Schindler, G., Ferroelectric Thin Films VI, MRS Fall meeting (1997), in pressGoogle Scholar
9. Schenk, P.K., Vaudin, M.D., Lee, B.W., Bonnell, D.W., Hastie, J.W., Mater. Res. Soc. Symp. Proc., 361 527 (1995)Google Scholar
10. DiDomenico, M. Jr., Wemple, S.H., Porto, S.P.S., Baumann, R.P., Phys. Rev. 174 174 (1968)Google Scholar
11. Nakamura, T., Ferroelectrics 137 65 (1992)Google Scholar
12. Scalabrin, A., Chaves, A.S., Shim, D.S., Porto, S.P.S., Phys. Stat. Sol. (b) 79 731 (1977)Google Scholar
13. Brice, D.K., Tsao, J.Y., Picraux, S.T., Nucl. Instr. Meth. Phys. Res., B44 68 (1989)Google Scholar
14. Husmann, A., Mertin, M., Klotzbticher, T., Kreutz, E.W., Appl. Surf. Sci., 109/110 293 (1997)Google Scholar