Hostname: page-component-7479d7b7d-pfhbr Total loading time: 0 Render date: 2024-07-08T17:14:52.341Z Has data issue: false hasContentIssue false

Charge coupled cyclotron motion of electrons and holes in InGaAsN epitaxial layers

Published online by Cambridge University Press:  26 February 2011

H. E. Porteanu
Affiliation:
Physik-Department E16, TU München, James-Franck-Str. 1, 85747 Garching, Germany
O. Loginenko
Affiliation:
Physik-Department E16, TU München, James-Franck-Str. 1, 85747 Garching, Germany
F. Koch
Affiliation:
Physik-Department E16, TU München, James-Franck-Str. 1, 85747 Garching, Germany
G. Dumitras
Affiliation:
Infineon Technologies, Corporate Research, CPR 7 D-81730 München, Germany
L. Geelhaar
Affiliation:
Infineon Technologies, Corporate Research, CPR 7 D-81730 München, Germany
H. Riechert
Affiliation:
Infineon Technologies, Corporate Research, CPR 7 D-81730 München, Germany
Get access

Abstract

Time resolved cyclotron resonance measurements are used to investigate more in further detail the effective mass of electrons and holes in InGaAsN epitaxial layers. The In and N content in the alloy are adjusted to yield the latticematching of the epilayers (200 nm thick) to GaAs. A continuous increase of the effective mass of electron and an increase of the resonance associated with holes is observed. Through the evolution of the imaginary part of conductivity as a function of the elapsed time we show that this observation is a coupled cyclotron resonance that may have maxima in the real part of conductivity but should not be necessarily correlated with the “increase” of the effective mass.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bi, W. G. and Tu, C. W., Appl. Phys. Lett. 70, 1608 (1997).Google Scholar
2. Grüning, H., Chen, L., Hartmann, Th., Klar, P. J., Heimbrodt, W., Höhnsdorf, F., Koch, J., and Stolz, W., phys. stat. sol. (b) 215, 39 (1999).Google Scholar
3. Kent, P. R. C. and Zunger, A., Phys. Rev. B 64, 115208 (2001).Google Scholar
4. Buyanova, A., Pozina, G., Hai, P. N., Chen, W. M., Xin, H. P., and Tu, C. W., Phys. Rev. B 63, 033303 (2000).Google Scholar
5. Perkins, J. D., Mascarenhas, A., Zhang, Y., Geisz, J. F., Friedman, D. J., Olson, J. M., and Kurtz, S. R., Phys. Rev. Lett. 82, 3312 (1999).Google Scholar
6. Zhang, Y., Mascarenas, A., Xin, H. P, and Tu, C. W., Phys. Rev. B 61, 7479 (2000).Google Scholar
7. Hai, P. N., Chen, W. M., Buyanova, I. A., Xin, H. P., Tu, C. W., Appl. Phys. Lett. 77, 1843 (2000).Google Scholar
8. Kaschner, A., Lüttgert, T., Born, H., Hoffmann, A., Egorov, A. Y., and Riechert, H., Appl. Phys. Lett. 78, 1391 (2001).Google Scholar
9. Grabtchak, S. Y. and Cocivera, M., Phys. Rev. B 50, 18219 (1994).Google Scholar
10. Porteanu, H. E., to be published in Rev. Sci. Instruments.Google Scholar