Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-29T09:39:28.304Z Has data issue: false hasContentIssue false

Characterization of Materials and Devices by Near-Field Scanning Optical Microscopy

Published online by Cambridge University Press:  15 February 2011

B. B. Goldberg
Affiliation:
Boston University, Dept. of Physics and Center for Photonics Research, Boston, MA 02215, [email protected]
H. F. Ghaemi
Affiliation:
Boston University, Dept. of Physics and Center for Photonics Research, Boston, MA 02215, [email protected]
M. S. Ünlü
Affiliation:
Boston University, Dept. of Physics and Center for Photonics Research, Boston, MA 02215, [email protected]
W. D. Herzog
Affiliation:
Boston University, Dept. of Physics and Center for Photonics Research, Boston, MA 02215, [email protected]
Get access

Abstract

Near field scanning optical microscopy (NSOM) is a recent technique where a tapered single-mode optical fiber probe is scanned over a sample surface at a height of a fraction of the wavelength. The tapered fiber provides a tiny aperture (a, ˜ 70nm) through which light is coupled and can yield resolutions as high as ˜, λ/40. We have used both room and low-temperature NSOM to study the local spectroscopic characteristics of a wide variety of material systems, from quantum dots and wires, to ordered GaInP, to heterojunctions and optoelectronic devices.

Low temperature near-field photoluminescence spectroscopy was used to study spectral emission maps of a set of samples of GaInP epilayers with varying degrees of ordering. The samples exhibit two peaks, a low energy (LE) and a high energy (HE) peak. Our data are inconsistent with expectations that the LE peak is due to emission from domain boundaries and alternative models will be discussed. NSOM spectral maps can yield information about the spatial dependence of the local optical matrix elements. NSOM data on the emission mode structure of strained (In, Ga)As quantum well lasers has yielded new information on the source kinks in the light response at high currents, while local photocurrent spectroscopy using the tip as a point source of photons provides analysis of the semiconductor layer composition.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Durig, U., Pohl, D. W., and Rohner, F., J. Appl. Phys. 59, 3318 (1986).Google Scholar
[2] Betzig, E., Trautman, J. K., Harris, T. D., Weiner, J. S., and Kostelak, R. L., Science 251, 1468 (1991).Google Scholar
[3] Betzig, E. and Trautman, J. K., Science 257, 189 (1992).Google Scholar
[4] Isaacson, M., Cline, J. A., and Barshatsky, H., Journal of Vacuum Science and Technology B 9, 3103 (1991).Google Scholar
[5] Buratto, S., Hsu, J., Trautman, J., Betzig, E., Bylsma, R., Bahr, C., and Cardillo, M., Ultramicroscopy (1994).Google Scholar
[6] Buratto, S. K., Hsu, J. W. P., Trautman, J. K., Betzig, E., Bylsma, R. B., Bahr, C. C., and Cardillo, M. J., J. Appl. Phys. 76, 7720 (1994).Google Scholar
[7] Hsu, J. W. P., Fitzgerald, E. A., Xie, Y. H., and Silverman, P. J., Applied Physics Letters 65, 344 (1994).Google Scholar
[8] Ünlü, M. S., Goldberg, B. B., Herzog, W. D., Cates, C. C., Ghaemi, H. F., Sun, D., and Towe, E., Proc. IEEE LEOS'94 (1994).Google Scholar
[9] Buratto, S. K., Hsu, J. W., Betzig, E., Trautman, J. K., Bylsma, R. B., Bahr, C. C., and Cardillo, M. J., Appl. Phys. Lett. 65, 2654 (1994), first NPC paper really.Google Scholar
[10] Ünlü, M. S., Goldberg, B. B., Herzog, W. D., Sun, D., and Towe, E., Applied Phys. Lett. 67, 1862 (1995).Google Scholar
[11] Karrai, K., Kolb, G., Abstreiter, G., and Schmeller, A., Ultramicroscopy in press (1995).Google Scholar
[12] Gornyo, A., Suzuki, T., and Iijima, S., Phys. Rev. Lett. 60, 2645 (1988).Google Scholar
[13] Wei, S. H. and Zunger, A., Phys. Rev. B 39, 3279 (1989).Google Scholar
[14] Mascarenhas, A., Kurtz, S., Kibbler, A., and Olson, J. M., Phys. Rev. Lett. 63, 2108 (1989).Google Scholar
[15] Wei, S. H. and Zunger, A., Appl. Phys. Lett. 56, 662 (1990).Google Scholar
[16] Mader, K. A. and Zunger, A., Appl. Phys. Lett. 64, 288 (1994).Google Scholar
[17] Ernst, P., Geng, C., Scholz, F., Schweizer, H., Zhang, Y., and Mascarenhas, A., Appl. Phys. Lett. 67, 2347 (1995).Google Scholar
[18] Mader, K. A. and Zunger, A., Phys. Rev. B 51, 10462 (1995).Google Scholar
[19] Kondow, M. and Minagawa, S., Appl. Phys. Lett. 54, 1760 (1989).Google Scholar
[20] DeLong, M. C., Ohlsen, W. D., Viohl, I., Taylor, P. C., and Olson, J. M., J. Appl. Phys. 70, 2780 (1991).Google Scholar
[21] Fouquet, J. E., Robbins, V. M., Rosner, J., and Blum, O., Appl. Phys. Lett. 57, 1566 (1990).Google Scholar
[22] Ernst, P., Geng, C., Moser, M., Scholz, F., and Schweizer, H., The, Physics of Semiconductors, World Scientific, 1995.Google Scholar
[23] Gregor, M. J., Blome, P. G., Ulbrich, R. G., Grossmann, P., Grosse, S., Feldmann, J., Stolz, W., Göbel, E. O., Arent, D. J., Bode, M., Bertness, K. A., and Olson, J. M., Appl. Phys. Lett. 67, 3572 (1995).Google Scholar
[24] Grober, R. D., Harris, T. D., Trautman, J. K., Betzig, E., Wegscheider, W., Pfeiffer, L., and West, K., Appl. Phys. Lett. 64, 1421 (1994).Google Scholar
[25] Nagamune, Y., Watabe, H., Sogawa, F., and Arakawa, Y., Appl. Phys. Lett. 67, 1535 (1995).Google Scholar
[26] Kolb, G.. Karraai, K., and Abstreiter, G., Appl. Phys. Lett. 65, 3090 (1994).Google Scholar
[27] Betzig, E. and Chichester, R. J., Science 262, 1422 (1993).Google Scholar
[28] Pohl, D. W., Fischer, U. C., and Durig, U. T., Jour. of Microscopy 152, 853 (1988).Google Scholar