Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-29T07:46:46.993Z Has data issue: false hasContentIssue false

Cathodoluminescence Studies of Bound Excitons and Near Band Gap Emission Lines in Boron- and Phosphorus-Doped CVD-Diamonds

Published online by Cambridge University Press:  15 February 2011

H. Sternschulte
Affiliation:
Abt. Halbleiterphysik, Universität Ulm, D-89069 Ulm, Germany
T. Albrecht
Affiliation:
Abt. Halbleiterphysik, Universität Ulm, D-89069 Ulm, Germany
K. Thonke
Affiliation:
Abt. Halbleiterphysik, Universität Ulm, D-89069 Ulm, Germany
R. Sauer
Affiliation:
Abt. Halbleiterphysik, Universität Ulm, D-89069 Ulm, Germany
M. Grieβer
Affiliation:
Institut rfiA nalytische Chemie, TU Wien, Getreidemarkt 9/151, A-1060 Wien, Austria
M. Grasserbauer
Affiliation:
Institut rfiA nalytische Chemie, TU Wien, Getreidemarkt 9/151, A-1060 Wien, Austria
Get access

Abstract

Cathodoluminescence measurements at cryogenic temperatures are reported on boron- and phosphorus-doped CVD-diamond films grown on silicon substrates. Boron and phosphorus concentrations were determined by SIMS measurements; for boron, they reached from unintentional background doping levels up to 3500 ppm. At increasing boron concentrations, the radiative recombination of boron bound excitons (BEto) at 5.22 eV photon energy systematically broadens and shifts down to 4.99 eV whereas the free exciton emission (FEto) disappears for 40 ppm and higher. In the phosphorus-doped films we observe new lines at 5.16 eV and 4.99 eV which we ascribe to TO- and (TO+Or)-phonon assisted transitions of an exciton bound to a shallow impurity other than boron, possibly phosphorus or a phosphorus-related shallow complex.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Gildenblatt, G. S., Grot, S. A., and Badzian, A., Proc. IEEE 79 (1991) 647.Google Scholar
2. Dean, P. J., Lightowlers, E. C., and Wight, D. R., Phys. Rev. 140A (1965) 352.Google Scholar
3. Lawson, S., Kanda, H., Kiyota, H., Tsutsumi, T., and Kawarada, H., J. Appl. Phys. 77 (1995) 1729.Google Scholar
4. Wagner, J., Phys. Rev. B29 (1984) 2002; Solid State Electron. 28 (1985) 25.Google Scholar
5. Kohn, W., Solid State Physics ed. F., Seitz and D., Tumbull (Academic, 1957), Vol.5, p. 257.Google Scholar
6. Sternschulte, H., Horseling, J., Albrecht, T., Thonke, K., and Sauer, R., Diamond Rel. Mater. (in press).Google Scholar
7. Haynes, J. R., Phys. Rev. Lett. 4 (1960) 361.Google Scholar
8. Kajihara, S., Antonelli, A., and Bernholc, J., MRS Symposia- Proc. 162 (1989) 315.Google Scholar
9. Prins, J. F., Diamond Rel. Mater. 4 (1995) 580.Google Scholar
10. Thomas, D. G. and Hopfield, J. J., Phys. Rev. 150 (1966) 680; P. J. Dean and D. C. Herbert, in “Excitons”, ed. K. Cho (Springer, 1979), p. 55; Landolt-Börnstein Vol.22b, (Springer, 1989), p. 340Google Scholar
11. Williams, A. W. S., Lightowlers, E. C., and Collins, A. T., J. Phys. C: Solid State Phys. 3 (1970) 1727 Google Scholar
12. Shiomi, H., Nishibayashi, Y., and Fujimori, N., Jpn. J. Appl. Phys. 30 (1991) 1363 Google Scholar