Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-23T19:19:23.705Z Has data issue: false hasContentIssue false

Catastrophic Optical-damage in High-power, Broad-area Laser-diodes

Published online by Cambridge University Press:  31 January 2011

Aland K. Chin
Affiliation:
[email protected], ALAND CHIN, LLC, Sharon, Massachusetts, United States
Rick K. Bertaska
Affiliation:
[email protected], ALAND CHIN, LLC, Sharon, Massachusetts, United States
Martin A. Jaspan
Affiliation:
[email protected], ALAND CHIN, LLC, Sharon, Massachusetts, United States
Allen M. Flusberg
Affiliation:
[email protected], ALAND CHIN, LLC, Sharon, Massachusetts, United States
Steve D. Swartz
Affiliation:
[email protected], ALAND CHIN, LLC, Sharon, Massachusetts, United States
Maciej T. Knapczyk
Affiliation:
[email protected], ALAND CHIN, LLC, Sharon, Massachusetts, United States
Israel Smilanski
Affiliation:
[email protected], ALAND CHIN, LLC, Sharon, Massachusetts, United States
Jonah H. Jacob
Affiliation:
[email protected], ALAND CHIN, LLC, Sharon, Massachusetts, United States
Get access

Abstract

A detailed description of the phenomenon of catastrophic optical-damage (COD) in short (380μm cavity-length), 12μm aperture, proton-bombarded, double-heterostructure laser-diodes with uncoated facets was first presented in 1974. In these devices, COD generally initiates at the facets due to high optical-power density and propagate along transverse-mode filaments. To achieve reliable operation at high optical-power, broad-area laser-diodes have evolved to long (several-millimeter cavity-length), wide-aperture (50-200μm), dielectric-defined, broadened-waveguide, separate-confinement, double-heterostructure, quantum-well laser-diodes with coated, passivated facets. COD in these devices involve both transverse modes and ring-cavity modes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hakki, B. W. and Nash, F. R., J. Appl. Phys. 45, 3907 (1974)10.1063/1.1663885Google Scholar
2. Henry, C. H., Petroff, P. M., Logan, R. A., and Merritt, F/R., J. Appl. Phys. 50, 3721 (1979)10.1063/1.326278Google Scholar
3. Chin, A. K., Bertaska, R. K., Jaspan, M. A., Flusberg, A. M., Swartz, S. D., Knapczyk, M. T., Petr, R., Smilanski, I. and Jacob, J. H., Proc. of SPIE, 7198, 719846–1 (2009)Google Scholar
4. Jacob, J. H., Petr, R., Jaspan, M. A., Swartz, S. D., Knapczyk, M. T., Flusberg, A. M., Chin, A. K., and Smilanski, I., Proc. of SPIE, 7198, 719841–1 (2009)Google Scholar
5. Crump, P., Blume, G., Paschke, K., Staske, R., Pietrzak, A., Zeimer, U., Einfeldt, S., Ginolas, A., Bugge, F., Häusler, K., Ressel, P., Wenzel, H., and Erbert, G., Proc. of SPIE, 7198, 719814–1 (2009)10.1117/12.807263Google Scholar
6. Sanayeh, M. Bou, Brick, P., Schmid, W., Mayer, B., Mνller, M., Reufer, M., Streubel, K., Tomm, J. W., Bacher, G., Appl. Phys. Lett. 91, 041115–1 (2007)10.1063/1.2760143Google Scholar
7. Sin, Y., Presser, N., Foran, B., and Moss, S. C., Proc. of SPIE, 6876, 68760R–1 (2008)10.1117/12.761848Google Scholar
8. Hodges, A., Wang, J., DeFranza, M., Liu, X., Vivian, B., Johnson, C., Crump, P., Leisher, P., DeVito, M., Martinsen, R. and Bell, J., Proc. of SPIE, 6552, 65521E–1 (2007)10.1117/12.730700Google Scholar
9. Garbuzov, D. Z., Abeles, J. H., Morris, N. A., Gardner, P. D., Triano, A. R., Garvey, M. G., Gilbert, D. B., and Connolly, J. C., Proc. of SPIE, 2682, 20 (1996)10.1117/12.237659Google Scholar
10. Gasser, M. and Latta, E. E., U. S. Patent 5,063, 173 (1991)Google Scholar
11. Ettenberg, M., Lockwood, H. F., and Sommers, H. S. Jr , J. Appl. Phys. 43, 5047 (1972)10.1063/1.1661068Google Scholar
12. Henshall, G. D., Appl. Phys. Lett. 31, 205 (1977)10.1063/1.89649Google Scholar
13. Ettenberg, M. and Kressel, H., J. Appl. Phys. 43, 1204 (1972)10.1063/1.1661237Google Scholar
14. Dyment, J. C., North, J. C., and D'Asaro, L. A., J. Appl. Phys. 44, 207 (1973)10.1063/1.1661863Google Scholar
15. Hashimoto, J., Yoshida, I., Murata, M., and Katsuyama, T., IEEE J. Quant. Electron., 33, 6670 (1997)10.1109/3.554891Google Scholar
16. Lichtenstein, N., Krejci, M., Manz, Y., Boucart, J., Valk, B., Müller, J., Button, C., Weiß, S., Pawlik, S., and Sverdlov, B., Proc. of SPIE, 6876, 68750C–1 (2008)Google Scholar
17. Hodges, A., Wang, J., DeFranza, M., Liu, X., Vivian, B., Johnson, C., Crump, P., Leisher, P., DeVito, M., Martinsen, R. and Bell, J., Proc. of SPIE, 6552, 65521E–1 (2007)10.1117/12.730700Google Scholar
18. Chin, A. K., unpublished resultsGoogle Scholar
19. Marciante, J. R. and Agrawal, J. P., Proc. of SPIE, 3283, 302 (1998)10.1117/12.316661Google Scholar
20. Casteele, J. Van de, Bettiati, M., Laruelle, F., Cargemel, V., Pagnod-Rossiaux, P., Garabedian, P., Raymond, L., Laffitte, D., Fromy, S., Chambonnet, D., and Hirtz, J. P., Proc. of SPIE, 6876, 68760P–1 (2008)10.1117/12.762943Google Scholar
21. Snyder, C. W., Lee, J. W., Hull, R., and Logan, R. A., Appl. Phys. Lett. 67, 488 (1995)10.1063/1.114545Google Scholar
22. Park, K. H., Lee, J. K., Jang, D. H., Cho, H. S., Park, C. S., Pyun, K. E., Jeong, J. Y., Nahm, S., J. Jeong, Appl. Phys. Lett. 73, 2567 (1998).10.1063/1.122557Google Scholar
23. Bublick, V. T. and Leikin, V. N., Phys. Stat. Sol. (a) 46, 365 (1978)10.1002/pssa.2210460148Google Scholar
24. Dingle, R. and Henry, C. H., U. S. Patent 3, 982, 207 (1976)Google Scholar