Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-17T08:20:23.215Z Has data issue: false hasContentIssue false

Buckling Dynamics of Tethered Membranes

Published online by Cambridge University Press:  10 February 2011

Dorel Moldovan
Affiliation:
Department of PhysicsM, West Virginia University, Morgantown, WV 26506
Leonardo Golubovic
Affiliation:
Department of PhysicsM, West Virginia University, Morgantown, WV 26506
Get access

Abstract

We investigate the dynamics of the classical Euler buckling of compressed solid membranes. We relate the membrane buckling dynamics to phase ordering phenomena. Membrane develops a wavelike pattern whose wavelength grows, via coarsening, as a power of time. Evolving membrane is similar to rough growing surfaces (“growing interfaces”) whose roughness grows as a power of time. Membrane buckling dynamics is characterized by a distinct scaling behavior not found in other coarsening phenomena

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. For a recent review see, Gompper, G. and Kroll, D. M. in Curt. Opin. Colloid Interface Sci. 2, 373 (1997)Google Scholar
2. Landau, L. D. and Lifshitz, E. M., Theory of elasticity (Pergamon, 1986); A.E.Love, A Treatise on the Mathematical Theory of Elasticity (Dover, 1994).Google Scholar
3. See, Proceedings of the Seventh International Conference on Experimental Safety Vehicles, Paris, 1979 (U.S. Department of Transportation, Washington, D.C., 1980).Google Scholar
4. Lobkovsky, A. E. et al., Science 270, 1482 (1995); A.E. Lobkovsky, Phys. Rev. E 53, 3750 (1996); E.M. Kramer and T. Witten, Phys Rev Lett. 78, 1303 (1997).Google Scholar
5. Hwa, T., Kokufuta, E., and Tanaka, T., Phys. Rev. A 44, 2235 (1991); M.S. Spector et al., Phys. Rev. Lett. 73, 2867 (1994); E. Sackmann et al., Phys. Chem. 89,1198 (1985); R.R. Chianelli et al., Science 203, 1105 (1979); C.F. Schmidt et al., Science 259, 952 (1993).Google Scholar
6. Bordieu, L. et al., Phys. Rev. Lett. 72, 1502 (1994); A. Saint-Jalmes and F. Gallet, European Physical Journal B2, 498(998).Google Scholar
7. Golubovic, L., Moldovan, D., and Peredera, A., Phys. Rev. Lett. 81, 3387 (1998).Google Scholar
8. Bray, A. J., Adv. in Phys. 43, 357 (1994); K. Binder, Rep. Prog. Phys. 50, 783 (1987); H. Furukawa, Adv. in Phys. 34, 703 (1985).Google Scholar
9. Ernst, H.-J. et al., Phys. Rev. Lett. 72, 112 (1994); M. D. Johnson et al., Phys. Rev. Lett. 72, 116 (1994); J. Amar and F. Family, Phys. Rev. B 54, 14742 (1996).Google Scholar
10. Golubovic, L. and Karunasiri, R. P. U., Phys. Rev. Lett. 66, 3156 (1991). L. Golubovic, Phys. Rev. Lett. 78, 90 (1997).Google Scholar
11. Kardar, M. and Nelson, D. R., Phys. Rev. Lett. 58, 1289 (1987).Google Scholar
12. Rouse dynamics does not incorporate long range effects of hydrodynamic back-flows on moving membranes [Zimm effects, see, e.g., Frey, E. and Nelson, D. R., J. Phys. I (France) 1, 1715 (1991)]. These effects can be readily included into our scaling analysis, which then yields, for the Zimm dynamics, δ = (2 – v)/(3 – v), and β = nc = 1/(3 – v); D. Moldovan and L. Golubovic (unpublished). With v=1/3 [4], we thus have δ δ 5/8 and β δ n c =3/8, for the Zimm dynamics.Google Scholar