Hostname: page-component-7bb8b95d7b-dtkg6 Total loading time: 0 Render date: 2024-09-13T22:17:30.324Z Has data issue: false hasContentIssue false

B2 Alulinides for High Temperature Applications

Published online by Cambridge University Press:  28 February 2011

K. Vedula
Affiliation:
Associate Professor, Department of Metallurgy and Materials Science, Case Western Reserve University, Cleveland, Ohio, 44106.
J.R. Stephes
Affiliation:
NASA Lewis Research Center, Cleveland, Ohio, 44135.
Get access

Abstract

The B2 aluminides are currently being investigated for potential high temperature structural applications. Although they are not being as actively pursued as the titanium aluminides or the L12 nickel aluminide, the B2 aluminides are very attractive from density gonsiderations. Several recent reviews of the potential for aluminides are available in literature [e.g Ref. 1,2]. Table I is a comparison of the titanium, nickel and iron aluminides of interest and shows that B2 NiAl and FeAl have the major advantage of lower densities than Ni3Al and Fe3Al. In addition, the melting point of NiAl is over 200K higher than convetitional nickel based superalloys. Hence, although low density is the prime driving force, at least in NiAl a temperature advantage is also possible. Both of these aluminides have the advantage of containing very inexpensive elements. In fact, the thrust towards the B2 aluminides evolved from a program aimed at conserving strategic aerospace materials at NASA Lewis Research Center. A recent thrust at NASA Lewis Research Center has been to consider these aluminides as matrix materials for fiber reinforced composite systems.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Stoloff, N.S., MRS Symposia Proceedings, High Temperature Ordered Intermetallic Alloys, Vol.39, 1984, p.1.Google Scholar
2.Structural Uses of Ordered Intermetallic Alloys’ Report by National Materials Advisory Board, NMAB-419, National Academy Press, Washington, D.C. 1984.Google Scholar
3. American Society for Metals, Metals Handbook, 8th ed. Vol.8., Metals Park, Ohio, 1973.Google Scholar
4. Swann, P.R., Duff, W.R. and Fisher, R.M., Met. Trans. Vol.3. p. 409, 1972.CrossRefGoogle Scholar
5. Swann, P.R., Duff, W.R. and Fisher, R.M., Trans. Met. Soc. AIME, V. 245, p.851, (1969).Google Scholar
6. Swann, P.R., Duff, W.R. and Fisher, R.M., Phys. Stat. Sol. Vol.37, p. 577 (1970).CrossRefGoogle Scholar
7. Allen, S.M. and Cahn, J.W., Acta Met. Vol.23, p. 1017, 1975.CrossRefGoogle Scholar
8. Allen, S.M. and Cahn, J.W., Acta Met. Vol.24, p. 425, 1976a.CrossRefGoogle Scholar
9. Allen, S.M. and Cahn, J.W., Acta Met. Vol.10, p. 451, 1976b.Google Scholar
10. Enami, K. and Nenno, S., Trans. Jpn. Inst. Met. Vol.19., p.571, 1978.CrossRefGoogle Scholar
11. Robertson, I.M. and Wayman, C.M., Metallography, Vol.17, p. 43, 1984.CrossRefGoogle Scholar
12. Singleton, M.F., Murray, J. and Nash, P., submitted to Bull. Alloy Phase Diagrams.Google Scholar
13. Khadkikar, P.S. and Vedula, K., submitted to J. of Materials Research.Google Scholar
14. Ridley, N., J. Inst. Metals, Vol.94, p. 255, 1966.Google Scholar
15. Bradley, A.J. and Taylor, A., Proc. Roy. Soc. A136, p. 210, 1932.Google Scholar
16. Bradley, A.J. and Taylor, A., Proc. Roy. Soc. A159, p. 56, 1937.Google Scholar
17. Wang, W.J., Lin, F. and Dodd, R.A., Scripta Met. Vol.12, p. 237, 1978.CrossRefGoogle Scholar
18. Neumann, J.P., Acta Met. Vol.28, p. 1165, 1980.CrossRefGoogle Scholar
19. Wasilewski, R.J., J. Phys. Chem. Solids, Vol.29, p. 39, 1968.CrossRefGoogle Scholar
20. Taylor, A. and Jones, R.M., J. Phys. Chem. Solids, Vol.6, p.16, 1958.CrossRefGoogle Scholar
21. Neumann, J.P., Chang, Y.A. and Lee, C.M., Acta Met. Vol.24, p. 593, 1976.CrossRefGoogle Scholar
22. Paris, D., Lesbats, P. and Levy, J., Scripta Met, Vol.9, p. 1373, 1975.CrossRefGoogle Scholar
23. Ho, K. and Dodd, R.A., Scripta Met., Vol.12, p. 1055, 1978.CrossRefGoogle Scholar
24. Libowitz, G.G., Met.Trans, Vol.2, p. 85, 1971.CrossRefGoogle Scholar
25. Jacobi, H. and Engell, H.J., Acta Met., Vol.19, p. 701, 1971.CrossRefGoogle Scholar
26. Yamagata, T. and Yoshida, H., Mat. Sci. and Engg. Vol.12, p. 95, 1973.CrossRefGoogle Scholar
27. Crawford, R.C., Phil. Mag. Vol.33, p. 529, 1976.CrossRefGoogle Scholar
28. Umakoshi, Y. and Yamaguchi, M., Phil. Mag. A, Vol.41, p. 573, 1980.CrossRefGoogle Scholar
29. Umakoshi, Y. and Yamaguchi, M., Phil. Mag. A, Vol.44, p. 711, 1981.CrossRefGoogle Scholar
30. Ray, I.L.F., Crawford, R.C. and Cockayne, D.J.H., Phil. Mag. Vol.21, p. 1027, 1970.CrossRefGoogle Scholar
31. Crimp, M.A. and Vedula, K., unpublished results.Google Scholar
32. Marcinkowski, M.J. and Brown, N., Acta Met. Vol.9, p. 764, 1961.CrossRefGoogle Scholar
33. Yamagata, T., Trans. JIM, Vol.18, p. 715, 1977.CrossRefGoogle Scholar
34. Mendiratta, M., Kim, H.M. and Lipsitt, H.A., Met. Trans. 15A, p. 395, 1984.CrossRefGoogle Scholar
35. Ball, A. and Smallman, R.E., Acta Met. Vol.14, p.1349, 1966.CrossRefGoogle Scholar
36. Wasilewski, R.J., Butler, S.R. and Hanlon, J.E., Trans. Met.Soc. AIME, Vol.239, p.1357, 1967.Google Scholar
37. Pascoe, R.T. and Newey, C.W.A., Met. Sci.J. Vol.2, p. 138, 1968.CrossRefGoogle Scholar
38. Pascoe, R.T. and Newey, C.W.A., Phys. Stat. Sol. Vol.29, p.357, 1968.CrossRefGoogle Scholar
39. Loretto, M.H. and Wasilewski, R.J., Phil. Mag. Vol.23, p. 1311, 1971.CrossRefGoogle Scholar
40. Bevk, J., Dodd, R.A. and Strutt, P.R., Met. Trans. Vol.4, p. 159, 1973.CrossRefGoogle Scholar
41. Fraser, H.L., Smallman, R.E. and Loretto, M.H., Phil. Mag. Vol.28, p. 651, 1973.CrossRefGoogle Scholar
42. Fraser, H.L., Loretto, M.H. and Smallman, R.E., Phil. Mag. Vol.28, p. 667, 1973.CrossRefGoogle Scholar
43. Ball, A. and Smallman, R.E., Acta Met, Vol.14, p.1517, 1966.CrossRefGoogle Scholar
44. Lautenschlager, E.P., Tisone, T.C. and Brittain, J.O., Phys. Stat. Sol. Vol.20, p.443, 1967.CrossRefGoogle Scholar
45. Lloyd, C.H. and Loretto, H.M., Phys. Stat. Sol. Vol.39, p. 163, 1970.CrossRefGoogle Scholar
46. Westbrook, J.H., J. Electrochem. Soc. Vol.103, p. 54, 1956.CrossRefGoogle Scholar
47. Sainfort, G., Mouturat, P., Mme Pepin, P., Petit, J., Cabane, G. and Salesse, M., Mem. Sc. Revde Met., Vol.40, p. 125, 1963.Google Scholar
48. Sainfort, G., Gregoire, J., Mouturat, P. and Romeggio, M. in Fragilite et Effets de L'irradiation, eds. Salesse, M. and Caudron, M., p. 187, Presses Universitaires de France, Paris, France, 1971.Google Scholar
49. Chatterjee, D.K. and Mendiratta, M.G., J. Metals, Vol.33, no.12, p.5, 1981.Google Scholar
50. Chatterjee, D.K. and Mendiratta, M.G., J. Metals, Vol.33, no.12, p.6, 1981.Google Scholar
51. Crimp, M.A., Vedula, K. and Gaydosh, D.J., this proceedings.Google Scholar
52. Crimp, M.A. and Vedula, K., Mat. Sci and Eng.,Vol.78, p. 193, 1986.CrossRefGoogle Scholar
53. Mantravadi, N., Pthesis, h.D., Case Western Reserve University, 1986.Google Scholar
54. Rozner, A.G. and Wasilewski, R.J., J. Inst. Metals, Vol.94, p. 169, 1966.Google Scholar
55. Schulson, E.M. and Barker, D.R., Scripta Met., Vol.17, p. 519, 1983.CrossRefGoogle Scholar
56. Schulson, E.M., COSAM Program Overview, NASA TM. 830006, NASA Lewis Research Center, 1982, p. 175.Google Scholar
57. Kear, B.H. and Wilsdorf, H.G.F., Trans. TMS-AIME Vol.224, p. 382, 1962.Google Scholar
58. Mendiratta, M.G. et. al. Technical Reports, AFWAL/MLLM, Contract F33615-81C-5059, 1982-1984.Google Scholar
59. Gaydosh, D.J., NASA Lewis Research Center, unpublished results.Google Scholar
60. Liu, C.T., White, C.L. and Lee, E.H., Scripta Met. Vol.19, p. 1247, 1985.CrossRefGoogle Scholar
61. Wolfenden, A., NASA report, No. WAG3-314, Dec, 1985.Google Scholar
62. Whittenberger, J.D., Mat. Sci and Eng., Vol.57, p. 77, 1983.CrossRefGoogle Scholar
63. Whittenberger, J.D., Mat. Sci. and Engg., Vol 77, p. 103, 1986.CrossRefGoogle Scholar
64 Whittenberger, J.D., paper accepted for publication in J. Mat. Sci.Google Scholar
65. Vedula, K. et.al., Modern Developments in Powder Metallurgy, Vol 16, p. 727, 1984.Google Scholar
66. Titran, R.H., Vedula, K. and Anderson, G., MRS Symposia Proceedings, High Temperature Ordered Intermetallic Alloys, Vol.39, p. 319, 1984.Google Scholar
67. Vedula, K. et. al., MRS Symposia Proceedings, High Temperature Ordered Intermetallic Alloys, Vol.39, p. 411, 1984.CrossRefGoogle Scholar
68. Sherman, M. and K.Vedula, Materials, J. Science, Vol.21, p. 1974, 1986.Google Scholar
69. Lawley, A., Coll, J.A. and Cahn, R.W., Trans. Met. Soc. AIME, Vol.218, p.166, 1960.Google Scholar
70. Vandervoort, R.R., Mukherjee, A.K. and Dorn, J.E., Trans. ASM, Vol.59, p. 930, 1966.Google Scholar
71. W. Yang, Dodd, R.A. and Strutt, P.R., Met. trans. Vol.3, p. 2049, 1972.Google Scholar
72. Mantravadi, N. and Vedula, K. unpublished results.Google Scholar
73. Pathare, V.M. and Vedula, K., unpublished results.Google Scholar
74. Aslanidis, I., Thesis, M.S., Case Western Reserve University, 1985.Google Scholar
75. Crimp, M.A. and Vedula, K., unpublished results.Google Scholar
76. Khadkikar, P.S. and Vedula, K., unpublished results.Google Scholar
77 Pathare, V.M., Thesis, M.S., Case Western Reserve University, 1984.Google Scholar
78 Nash, P., MRS Symposia Proceedings, High Temperature Ordered Alloys, Vol.39, p.423, 1984.Google Scholar
79. Pathare, V.M., Vedula, K. and Michal, G., paper submitted to Scripta Met.Google Scholar
80. Vedula, K. et.al. unpublished work in progress.Google Scholar
81. Schulson, E.M. and Barker, D.R., Scripta Met., Vol.17, 1983, p. 519.CrossRefGoogle Scholar
82 Gaydosh, D.J. and Crimp, M.A., MRS Symposia Proceedings, High Temperature Ordered Alloys, Vol.39, p. 429, 1984.CrossRefGoogle Scholar
83. Law, C.C. and Blackburn, M.J., United Technologies Corporation, Pratt & Whitney Group, Interim Reports, AFWAL/MLLM, Contract No.F33615-84-C-5067.Google Scholar
84. Noebe, R. and Gibala, R., MRS Symposia Proceedings, High Temperature Ordered Intermetallic Alloys, Vol.39, p.319, 1984.CrossRefGoogle Scholar
85. Scholl, R., Larson, D.J. and Friese, E.J., j. App. Phy., Vol.39, No.5, p. 2186, 1968.CrossRefGoogle Scholar
86. Lautenschlager, E.P. et. al. Acta Met., Vol.15, p. 1347, 1967.CrossRefGoogle Scholar
87. Liu, C.T., Int. Met. Reviews, Vol.29, p. 168, 1084.Google Scholar
88. Strothers, S.D. and Vedula, K., unpublished results.Google Scholar