Hostname: page-component-6d856f89d9-72csx Total loading time: 0 Render date: 2024-07-16T04:24:57.524Z Has data issue: false hasContentIssue false

The Application of Solid Phase Epitaxy for the Incorporation of Substitutional Carbon in Silicon

Published online by Cambridge University Press:  15 February 2011

Jon J. Candelaria
Affiliation:
Materials Research and Strategic Technologies, Motorola Inc., 2200 W. Broadway, Mesa, AZ.
J. K. Watanabe
Affiliation:
Materials Research and Strategic Technologies, Motorola Inc., 2200 W. Broadway, Mesa, AZ.
N. Da Vid Theodore
Affiliation:
Materials Research and Strategic Technologies, Motorola Inc., 2200 W. Broadway, Mesa, AZ.
Richard B. Gregory
Affiliation:
Materials Research and Strategic Technologies, Motorola Inc., 2200 W. Broadway, Mesa, AZ.
Dieter K. Schroder
Affiliation:
Department of Electrical Engineering, Arizona State University, Tempe, AZ.
Lawrence M. Stout
Affiliation:
Department of Electrical Engineering, Arizona State University, Tempe, AZ.
Nigel G. Cave
Affiliation:
Materials Research and Strategic Technologies, Motorola Inc., 2200 W. Broadway, Mesa, AZ.
Get access

Abstract

Carbon was substitutionally incorporated into silicon using ion implantation and solid phase epitaxy (SPE) to regenerate a high quality crystalline substrate. Carbon was implanted into Si (100) substrates using a single implant of 25 keV ai doses ranging from 1.75 × 1015 to 1.05 × 1016/cm2. After carbon implantation half of the substrates were amorphized using a silicon implant. All of the wafers were subjected to a 700°C anneal in N2 ambient for 30 Minutes to induce SPE regrowth of the implanted regions. FTIR, SIMS, RBS, and TEM were used to characterize the samples. Results indicate that carbon was substitutionally incorporated into the silicon lattice, but that some carbon did precipitate to form silicon carbide. Post-amorphization improved regrowth of implanted regions in lower dose implanted wafers. Electrical Measurements on diode structures indicate that the band gap was reduced for carbon incorporation at these concentrations.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Posthill, J. B., Rudder, R. A., Hattengady, S. V., Fountain, G. G., and Markunas, R. J., Appl. Phys. Lett. 56 (8), 734 (1990).Google Scholar
2. Iyer, S. S., Eberl, K., Goorsky, M. S., LeGoues, F. K., Tsang, J. C., and Cardone, F., Appl. Phys. Lett. 60 (3), 356 (1992).Google Scholar
3. Eberl, K., Iyer, S. S., Tsang, J. C., Goorsky, M. S., and Legoues, F. K., J. Vac. Sci. Tech. B 10 (2), 932 (1992).Google Scholar
4. Tsang, J. C., Eberl, K., Zollner, S., and Iyer, S. S., Appl. Phys. Lett. 61, 961 (1992).Google Scholar
5. Powell, A. R., Eberl, K., LeGoues, F. E., Ek, B. A., and Iyer, S. S., J. Vac. Sci. Tech. B11 (3), 1064 (1993).Google Scholar
6. Strane, J. W., Edwards, W. J., Stein, H. S., Lee, S. R., Doyle, B. L., Picraux, S. T., and Mayer, J. W. in Evolution of Surface and Thin Film Microstructiire edited by. Atwater, H. A., Chason, E., Grabow, M., Lagally, M. (Mater. Res. Soc. Proc. 280, Pittsburgh, PA, 1992) pp. 609.Google Scholar
7. Soref, R. A., J. Appl. Phys. 70, 2470 (1991).Google Scholar
8. Demkov, A. A. and Sankey, O. F., Phys. Rev. B, 48, 2207 (1993).Google Scholar