Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-23T17:05:34.212Z Has data issue: false hasContentIssue false

Actinide Science with a Soft X-ray Scanning Transmission X-ray Microscope (STXM)

Published online by Cambridge University Press:  01 February 2011

Per-Anders Glans
Affiliation:
[email protected], Lawrence Berkeley National Laboratory, Chemical Sciences Division, Berkeley, California, United States
Geza Szigethy
Affiliation:
[email protected], Lawrence Berkeley National Laboratory, Chemical Sciences Division, Berkeley, California, United States
Dustin Demoin
Affiliation:
[email protected], Lawrence Berkeley National Laboratory, Chemical Sciences Division, Berkeley, California, United States
Tolek Tyliszczak
Affiliation:
[email protected], Lawrence Berkeley National Laboratory, Advanced Light Source Division, Berkeley, California, United States
Jide Xu
Affiliation:
[email protected], University of California, Department of Chemistry, Berkeley, California, United States
Jinghua Guo
Affiliation:
[email protected], Lawrence Berkeley National Laboratory, Advanced Light Source Division, Berkeley, California, United States
Kenneth N. Raymond
Affiliation:
[email protected], Lawrence Berkeley National Laboratory, Chemical Sciences Division, Berkeley, California, United States
David K. Shuh
Affiliation:
[email protected], Lawrence Berkeley National Laboratory, Chemical Sciences Division, Berkeley, California, United States
Get access

Abstract

Soft x-ray scanning transmission x-ray microscope (STXM) spectromicroscopy has been developed and employed to investigate several aspects of actinide chemistry and materials science at the Advanced Light Source Molecular Environmental Science (ALS-MES) Beamline 11.0.2 STXM end station. The basic approach and fundamentals of STXM experiments for radioactive materials systems is discussed. Representative results from STXM spectromicroscopy investigations of a mixed phase uranium nitride, single crystals of Eu(III)[TREN(Me-3,2-HOPO)]3 2H2O and hydrated Pu2(III)(C2O4)3(6H2O) 3H2O complexes are presented. The STXM images and soft x-ray absorption spectra illustrate the capabilities and utility of soft x-ray STXM for providing information about actinide materials, especially the light element constituents. Lastly, new and future opportunities for actinide science utilizing soft x-ray STXM are discussed in light of the planned upgrades for the STXM end stations at the ALS.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Shuh, D. K. OECD NEA Vol. 6288, 125 (2007).Google Scholar
2 Bluhm, H. Andersson, K. Araki, T. Benzerara, K. Brown, G. E. Dynes, J. J. Ghosal, S. Gilles, M. K. Hansen, H. C. Hemminger, J. C. Hitchcock, A. P. Ketteler, G. Kilcoyne, A. L. D. Kneedler, E. Lawrence, J. R. Leppard, G. G. Majzlam, J. Mun, B. S. Myneni, S. C. B. Nilsson, A. Ogasawara, H. Ogletree, D. F. Pecher, K. Salmeron, M. Shuh, D. K. Tonner, B. Tyliszczak, T. Warwick, T. and Yoon, T. H. J. Electron Spectrosc. 150, 86 (2006).Google Scholar
3 Stöhr, J., NEXAFS Spectroscopy, Volume 25, Springer Springer-Verlag, Berlin (1992).Google Scholar
4 Janousch, M. Copping, R. Tolek Tyliszczak, I. Castro-Rodriguez, Castro, and Shuh, D. K. Mater. Res. Soc. Symp. Proc. 1104, 165 (2008).Google Scholar
5 Nilsson, H. Tyliszczak, T. Wilson, R. E. Werme, L. and Shuh, D. K. Anal. Bioanal. Chem. 383, 41 (2005).Google Scholar
6 Nilsson, H. Tyliszczak, T. Wilson, R. E. Werme, L. and Shuh, D. K.; In Recent Advances in Actinide Science; May, I., Bryan, N. D., Alvares, R., Eds.; Royal Society of Chemistry: s.; London, 2006; pp. 5658.Google Scholar
7 Fillaux, C. Berthet, J. J. C. Conradson, S. D. Guilbaud, P. Guillaumont, D. Hennig, C. Moisy, P. Roques, J. Simoni, E. Shuh, D. K. Tyliszczak, T. Castro-Rodriguez, I. Castro, and Auwer, C. Den, Chim, C. R.. 10, 859 (2007). ,Google Scholar
8 Vigier, N. Auwer, C. Den, Fillaux, C. Maslennikov, A. Noel, H. Roques, J. Shuh, D. K. Simoni, E. Tyliszczak, T. and Moisy, P. Chem. Mater. 20, 3199 (2008).Google Scholar
9 Bugaris, D. E. Ibers, J. A. Copping, R. Tyliszczak, T. and Shuh, D. K. Inorg. Che Chem. 49, 2568 (2010).Google Scholar
10 Minasian, S. G. Krinsky, J. L. Rinehart, J. D. Williams, V. A. Copping, R. Tyliszczak, T. Janousch, M. Shuh, D. K. and Arnold, J. J. Amer. Chem. Soc. 38, 13767 (2009).Google Scholar
11 Dupouy, G. Dumas, T. Fillaux, C. Guillaumont, D. Moisy, P. Mo, Auwer, C. Den, Naourisy, C. Le, Simoni, E. Fuster, E. G. Papalardo, R. Marcos, E. Sanchez, Hennig, C. Scheinost, A. Conradson, S. D. Shuh, D. K. and Tyliszczak, T. “Molecular Solids of Actinide Hexacyanoferrate: Structure and Bonding,” Instit. of Physics: M Mater. Sci. Eng., in press, ater. (2010).Google Scholar
12 Copping, R. Jeon, B. Teat, S. J. Janousch, M. Tyliszczak, T. Canning, A. and Shuh, D. K. in preparation (2009).Google Scholar
13 Warwick, T. Andresen, N. Comins, J. McKean, P. J. Shuh, D. K. Stevens, T. and Tyliszczak, T. Synchro Synchrotron Radiation Instrumentation 2003, AIP Conference Proceedings tron 705, 458 (2004).Google Scholar
14 Tyliszczak, T. Warwick, T. Kilcoyne, A. L. D. Fakra, S. Shuh, D. K. Yoon, T. H. Brown, G. E. Jr. , Andrews, S. Chembrolu, V. Strachan, J. and Acremann, Y. Synchrotron Rad Radiation Instrumentation 2003, AIP Conference Proceedings iation 705, 1356 (2004).Google Scholar
15 Hitchock, A. P. aXis, Version 17; McMaster University: Hamilton, Ontario, Canada, 2008.Google Scholar
16 Shuh, D. K. Nico, P. S. Tyliszczak, T. and Daehn, R. results from the ALS ALS-MES STXM (2008).Google Scholar
17 Chiou, J. W. Mookerjee, S. Rao, K. V. R. Jan, J. C. Tsai, H. M. Asokan, K. Pong, W. F. Chien, F. Z. Tsai, M. H. Chang, Y. K. Chen, Y. Y. Lee, J. F. Lee, C. C. and Chi, G. C. Appl. Phys. Lett. 81, 3389 (2002).Google Scholar
18 Lawniczak-Jablonska, K., Suski, T., Gorczyca, I. Christensen, N. E. Attenkofer, K. E. Perera, R. C. C. Gullikson, E. M. Underwood, J. H. Ederer, D. L. and Weber, Z. L. Phys. Rev. B61, 16623 (2000).Google Scholar
19 Lambrecht, W. R. L. Rashkeev, S. N. Segall, B. Lawniczak-Jablonska, K., Suski, T. Gullikson, E. M. Underwood, J. H. Perera, R. C. C. Rife, J. C. Grzegory, I. Porowski, S. and Wickenden, D. K. Phys. Rev. B55, 2612 (1997).Google Scholar
20 Stagarescu, C. B. Duda, L. C. Smith, K. E. Guo, J. H. Nordgren, J. Singh, R. and Moustakas, T. D. Phys. Rev. B54, 173 , 17335 (1996).Google Scholar
21 Gorden, A. E. V. Xu, J. and Raymond, K. N. Chem. Rev. 103, 4207 (2003).Google Scholar
22 Xu, J. Franklin, S. J. Whisenhunt, D. W. Jr. , and Raymond, K. N. J. Amer. Chem. Soc. 117, 7245 (1995).Google Scholar
23 Demoin, D. Szigethy, G. Castro-Rodriguez, I., Xu, J. Tyliszczak, T. Tyl, Shuh, D. K. and iszczak, K. N. Raymond (unpublished).Google Scholar
24 Thole, B. T. Laan, G. van der, Fuggle, J. C. Sawatzky, G. A. Karnatak, R. C. and Esteva, J. J. M. Phys. Rev. B32, 5107 (1985).Google Scholar
25 Shuh, D. K. Terminello, L. J. Boatner, L. A. and Abraham, M. M. Mater Mater. Res. Soc. Symp. Proc. 307, 95 (1993).Google Scholar
26 Chemistry of the Actinide and Transactinide Elements, 3rd ed.; Morss, L. R. Edelstein, N. M. Fuger, J. Eds.; Springer: Dordrecht, The Netherlands, 2006; Vol. 2, pp. 11731175.Google Scholar
27 Runde, W. Brodnax, L. F. Goff, G., Bean, A. C. and Scott, B. L. Inorg. Chem. f48, 5967, (2009).Google Scholar
28 Howells, M. R. Beetz, T. Chapman, H. N. Cui, C. Holton, J. M. Jacobsen, C. J. Kirz, J. Lima, E. Marchesini, S. Miao, H. Sayre, D. Shapiro, D.A. Spence, J. C. H. and Starodub, D. J. Electron. Spectros. Rel. Phenom. 170, 4 (2009).Google Scholar
29 Wang, J. Morin, C. Li, L. Hitchcock, A. P. Scholl, A. and Doran, A. Doran, 170, 25 (2009).Google Scholar
30 Tyliszczak, T. and Hitchcock, A. P. (2010).Google Scholar
31Amptek Inc., www.amptek.com (2010).Google Scholar
32 Fakra, S. Kilcoyne, A. L. D. and Tyliszczak, T., Synchrotron Radiation Instrumentation 2003, AIP Conference Proceedings 708, 973 (2004).Google Scholar
33 Moore, K. T. and Laan, G. van der, Rev. Mod. Phys. 81, 235 (2009).Google Scholar
34Center for X X-ray Optics, X X-ray Interactions with Matter; LBNL:Berkeley, CA, U.S.A.; ht http://www tp://www-cxro.lbl.gov/optical optical-constants.Google Scholar
35 Denning, R. G. Green, J. C. Hutchings, T. E. Dallera, C. Tagliaferri, A. Giarda, K. Brookes, N. B. and Braicovich, L. J. Chem. Phys. 117, 8008 (2002).Google Scholar
36 Denning, R. G. J. Phys. Chem. A111, 41225 (2007).Google Scholar
37 Prodan, I. D. Scuseria, G. E. and Martin, R. L. Phys. Rev. B. 76, 033101 (2007).Google Scholar
38 Janesko, B. G. Henderson, T. M. and Scuseria, G. E. Phys. Chem. Phys. 11, 443, (2009).Google Scholar
39 Kozimor, S. A. Yang, P. Batista, E. R. Boland, K. S. Burns, C. J. Clark, D. L. Conradson, S. D., Martin, R. L. Wilkerson, M. P. and Wolfsberg, L. E. J. Amer. Chem. Soc. 131, 12125 (2009).Google Scholar
40 Drake, I. Liu, T. C. N. Gilles, M. K. Tyliszczak, T. Kilcoyne, A. L. D. Shuh, D. K. Mathies, R. A. and Bell, A. T. Rev. Sci. Instrum. 75, 324, 3242 (2004).Google Scholar
41 Smit, E. de, Swart, I. Creemer, J. Hoveling, G. H. Gilles, M. K. Tyliszczak, T. Kooyman, P. J. Zandbergen, H. W. Morin, C. Weckhuysen, B. M. and Groot, F. M. F. de, Nature 456, 222 (2008).Google Scholar