Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-20T13:42:21.362Z Has data issue: false hasContentIssue false

Processing, Characterization and Reliability of Silica Xerogel Films for Interlayer Dielectric Applications

Published online by Cambridge University Press:  17 March 2011

Anurag Jain
Affiliation:
Department of Chemical Engineering, Rensselaer Polytechnic Institute, Troy NY- 12180
Svetlana Rogojevic
Affiliation:
Department of Chemical Engineering, Rensselaer Polytechnic Institute, Troy NY- 12180
Feng Wang
Affiliation:
Department of Chemical Engineering, Rensselaer Polytechnic Institute, Troy NY- 12180
William N. Gill
Affiliation:
Department of Chemical Engineering, Rensselaer Polytechnic Institute, Troy NY- 12180
Peter C. Wayner Jr.
Affiliation:
Department of Chemical Engineering, Rensselaer Polytechnic Institute, Troy NY- 12180
Joel L. Plawsky
Affiliation:
Department of Chemical Engineering, Rensselaer Polytechnic Institute, Troy NY- 12180
Arthur Haberl
Affiliation:
Department of Physics, University at Albany, Albany, NY-12222
William Lanford
Affiliation:
Department of Physics, University at Albany, Albany, NY-12222
Get access

Abstract

Surface modified silica xerogel films of high porosity (25-90 %) and uniform thickness (0.4-2 µm) were fabricated at ambient pressure on silicon and other substrates. Mechanical reliability of the films was determined by measuring fracture toughness (adhesive) as a function of aging time and temperature using the modified edge-lift-off technique. There is an optimum aging time at 60 °C aging to obtain maximum fracture toughness for the procedure used here.

Cu/xerogel/Si and Ta/xerogel/Si structures were annealed at different temperatures and in different ambient environments were analyzed using RBS and optical microscopy to assess the extent of interaction with the xerogel film. When annealed in N2 with trace amounts of O2 (equivalent to 10-7-10-6 Torr vacuum), RBS analysis does not show diffusion of Cu or Ta through the xerogel up to 450 °C. At higher temperatures, or in the presence of larger concentrations of O2, Cu and Ta oxidize. Cu oxidation leads to significant diffusion through the xerogel. Ta oxidation also results in diffusion-like RBS spectra. Using the micron-size ion beam to probe the Ta surface, this was found to be solely due to buckling of Ta films on xerogel. A thin SiNx layer on top of Cu and Ta prevents metal oxidation up to 640 °C, Cu diffusion, and Ta buckling.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Prakash, S. S., S. S., , Brinker, C. J., Hurd, A. J., J. Non-Cryst. Solids, 190, 264, (1995).10.1016/0022-3093(95)00024-0Google Scholar
2. Jin, C., Luttmer, J. D., Smith, D. M., Ramos, T. A., MRS Bulletin, pp 3942, Oct. (1997).10.1557/S0883769400034187Google Scholar
3. Yang, H-S., Choi, S-Y., Hyun, S-H., Park, H-H., Hong, J-K., J. Non-Cryst. Solids, 221, 151, (1997).10.1016/S0022-3093(97)00335-9Google Scholar
4. Hrubesh, L. H., and Poco, J. F., J. Non-Cryst. Solids, 188, 46, (1995).10.1016/0022-3093(95)00028-3Google Scholar
5 Jo, M. - H, Park, H.-H., Kim, D-J., Hyun, S-H., Choi, S-Y., Paik, J-T, J. Appl. Phys., 82, 1299, (1997).10.1063/1.365902Google Scholar
6 Jin, C., List, S., Zielinski, E., Mat. Res. Soc. Symp. Ser., 511, 213, (1998).10.1557/PROC-511-213Google Scholar
7. Nitta, S. V., Pisupatti, V., Jain, A., Wayner, P. C. Jr., Gill, W. N., and Plawsky, J. L., J. Vac. Sci. Tech. B, 17(1), 205, (1999).10.1116/1.590541Google Scholar
8. Nitta, S., Jain, A., Pisupatti, V., Gill, W. N., Wayner, P. C., Jr., and Plawsky, J. L. in Low Dielectric Constant Materials-IV (Mat. Res. Soc. Symp. Proc. 511, Pittsburgh, PA, 1998) pp 99103.Google Scholar
9. Brinker, C. J. and Scherer, G. W., Sol Gel Science (Academic Press, 1990).Google Scholar
10. Shaffer, E. O., McGarry, F. J., and Hoang, L., Polym. Sci. & Eng., 36(18), 2375, (1996).10.1002/pen.10635Google Scholar
11. Shaffer, E. O., Townsend, P. H., and Im, J-H., Conf. Proc. ULSI XII, 429, (1997).Google Scholar
12. Smith, D. M., Johnston, G. P, Ackerman, W. C., and Jeng, S. - P., U. S. Patent # 5753305, May (1998).Google Scholar
13. Gallais, P., Hantzpergue, J. J., and Remy, J. C., Thin Solid Films 165, 227236 (1988).10.1016/0040-6090(88)90693-1Google Scholar
14. Buchwalter, L. P., J. Adhes. Sci. Tech., 9(1), 97116 (1995).10.1163/156856195X00329Google Scholar
15. Chu, W.-K., Mayer, J. W., and Nicolet, M. -A., Backscattering Spectrometry, (Academic Press, New York, 1978).10.1016/B978-0-12-173850-1.50008-9Google Scholar
16. Windischmann, H., Crit. Rev. Solid. State Mat. Sci., 17(6), 547596 (1992.)10.1080/10408439208244586Google Scholar
17. Hoffman, D. W., J. Vac. Sci. Tech. A, 20(3), 355, (1982).10.1116/1.571463Google Scholar
18. Price, D. T., Ph.D. Thesis, Rensselaer Polytechnic Institute, (1999).Google Scholar
19. Kapila, D. and Plawsky, J. L., AIChE Journal, 39(7), 1186, (1993).10.1002/aic.690390710Google Scholar