Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-29T07:47:13.175Z Has data issue: false hasContentIssue false

PGSE-NMR & Sans from TPB Based Microemulsions

Published online by Cambridge University Press:  21 February 2011

Paul M. Lindemuth
Affiliation:
University of Missouri-Rolla, Department of Chemistry, Rolla, MO, 65401
Boualem Hammouda
Affiliation:
University of Missouri-Columbia, Research Reactor Facility, Columbia, MO, 65211
Joseph R. Duke
Affiliation:
University of Missouri-Rolla, Department of Chemistry, Rolla, MO, 65401
Frank D. Blum
Affiliation:
University of Missouri-Rolla, Department of Chemistry, Rolla, MO, 65401
Raymond L. Venable
Affiliation:
University of Missouri-Rolla, Department of Chemistry, Rolla, MO, 65401
Get access

Abstract

Self-diffusion coefficients from pulsed-gradient spin-echo NMR are reported for four components of the tetradecylpyridinium bromide - 85% heptane/15% pentanol - water pseudoternary system. Measurements were taken throughout the inverted microemulsion region and also in a small isotropic region beyond the domain of lamellar liquid crystals. Observations of the self-diffusion coefficients for water relative to those of the surfactant, oil and alchohol show several distinct structural transitions within the water-in-oil region of the phase diagram. The smaller isotropic region exhibits a complete inversion of phase relative to the water-in-oil region. Conductivity measurements were used to further clarify the NMR data. Subsequent small angle neutron scattering (SANS) measurements on the same system show the transition from the single particle (heavy water + Stern layer droplet) scattering regime at low water concentration to the mixed single/interdroplet scattering regime when the intermicellar distance becomes comparable to the size of the micelles.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hoar, T. H. and Schulman, J. H., Nature (London) 152, 102 (1943).Google Scholar
2. Shinoda, K. and Saito, H., J. Colloid & Interface Sci. 26, 70 (1968).Google Scholar
3. Scriven, L. E., Micellization. Solubilization & Microemulsions, vol.2 (Plenum Press, New York, 1977), p. 877.Google Scholar
4. Talmon, Y. and Prager, S., J. Phys. Chem 69, 517 (1978).Google Scholar
5. Friberg, S., Lapcyzynska, I., and Gillberg, G., J. Colloid & Interface Sci. 56, 19 (1976).Google Scholar
6. Blum, F. D., Pickup, S., Ninham, B. W., Chen, S. J. and Evans, D. F., J. Phys. Chem. 89, 711 (1985).Google Scholar
7. Venable, R. L., J. of American Oil Chemist's Soc. 62, 1 (1985).Google Scholar
8. Kirkpatrick, S., J. Phys. Rev. Lett. 27, 1722 (1971).Google Scholar
9. Mildner, D. F. R., Berliner, R., Pringle, O. A. and King, S., J. Applied Cryst. 14, 109 (1981).Google Scholar
10. Eicke, H. F. and Christen, H., Helv. Chem. Acta. 61, 2258 (1978).Google Scholar
11. Shah, D. O. amd Hamlin, R. M., Science 171, 483 (1971).Google Scholar
12. Sjoblom, E. and Friberg, S., J. Colloid & Interface Sci. 67, 16 (1978).Google Scholar
13. Carnalli, J., Lindman, B., Soderman, O. and Walderhaug, H., Langmuir 1, 51 (1986).Google Scholar
14. Stilbs, P. and Lindman, B., Prog. Colloid Polymer Sci. 69, 39 (1984).Google Scholar
15. Dijk, M. A. van, Casteleijn, G., Joosten, J. G. H. and Levine, Y. K., J. Chem. Phys. 85, 826 (1986).Google Scholar
16. Lagues, M., Ober, R. and Taupin, C., J. Phys. Lett 39, L487491 (1978).Google Scholar
17. Eicke, H. F., Shepherd, J. C. W. and Steinemann, A., J. Colloid & Interface Sci. 56 168 (1976).Google Scholar
18. Chang, N. J. and Kaler, E. W., Langmuir 2, 184 (1986).Google Scholar
19. Eicke, H. F. and Denns, A., Solution Chemistry of Surfactants vol.2 (Plenum Press, New York, 1979), p. 699.Google Scholar
20. Ingram, T. and Jones, M. N., Trans. Faraday Soc. 65, 297 (1969).Google Scholar