No CrossRef data available.
Article contents
Passivation of III-V Semiconductor Surfaces Using Light Assisted Integrated Processes
Published online by Cambridge University Press: 22 February 2011
Abstract
Passivation of III-V semiconductor surfaces and especially the GaAs surface has been studied for over two decades without significant breakthrough. However, III-V device performances are still often limited by surface properties. In particular field effect behaviour in GaAs has been impossible to obtain due to the Fermi level pinning at the surface of this material. This paper presents an integrated sequence of low thermal budget processes to provide contamination control at the GaAs surface leading to very promising field effect on GaAs.
In-situ surface cleaning using a Distributed Electron Cyclotron Resonance Microwave plasma (DECR MMP) has been integrated with a thin dielectric film deposition facility using light assisted CVD technics. Photoluminescence results carried out on GaAs surfaces have demonstrated that exposure to a hydrogen plasma induces lower recombination rates on these surfaces. Bulk diffusion of hydrogen during this process can be controlled and eliminated using an integrated Rapid Thermal Annealing (RTA). Finally, in-situ encapsulation by a dielectric allows one to stabilize the electronic properties of the surface for passivation applications. A silicon nitride film deposited by a direct UV photolysis deposition process has been developed for this study and is presented here.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1994