Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-23T12:14:24.374Z Has data issue: false hasContentIssue false

Nanocrystalline silicon compacted by spark-plasma sintering: Microstructure and thermoelectric properties

Published online by Cambridge University Press:  01 February 2011

Gabi Schierning
Affiliation:
Tania Claudio
Affiliation:
[email protected], Forschungszentrum Juelich, Juelich, Germany
Ralf Theissmann
Affiliation:
[email protected], University of Duisburg-Essen, Duisburg, Germany
Niklas Stein
Affiliation:
[email protected], University of Duisburg-Essen, Duisburg, Germany
Nils Petermann
Affiliation:
[email protected], University of Duisburg-Essen, Duisburg, Germany
Andre Becker
Affiliation:
[email protected], University of Duisburg-Essen, Duisburg, Germany
Joachim Denker
Affiliation:
[email protected], University of Duisburg-Essen, Duisburg, Germany
Hartmut Wiggers
Affiliation:
[email protected], University of Duisburg-Essen, Duisburg, Germany
Raphael T. Hermann
Affiliation:
[email protected], Forschungszentrum Juelich, Juelich, Germany
Roland Schmechel
Affiliation:
[email protected], University of Duisburg-Essen, Duisburg, Germany
Get access

Abstract

Nanocrystalline bulk silicon samples were fabricated using silicon nanoparticles from the gas phase, applying a spark-plasma sintering process. The mean diameter of the crystalline grains after sintering was 30 nm and smaller, the density above 97 % of that of crystalline silicon. Transmission electron microscopy showed a homogenous nanostructure. The thermal conductivity of such an n-type sample with a nominal doping level of 5×1020 cm-3 was around 11 Wm-1K-1 at room temperature. With Seebeck-coefficient α = -150 μV/K and specific conductivity σ = 290 S cm-1, the resulting efficiency ZT is approximately 0.02.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Poudel, B., Hao, Q. Ma, Y. Lan, Y. Minnich, A. Yu, B. Yan, X. Wang, D. Muto, A. Vashaee, D., Chen, X. Liu, J. Dresselhaus, M. S. Chen, G. and Ren, Z. Science (2008), 1156446.Google Scholar
2 Dresselhaus, M. S., Chen, G. Tang, M. Y. Yang, R. Lee, H. Wang, D. Ren, Z. Fleurial, J.-P. and Gogna, P. Adv. Mater. 19 (2007), 1043.10.1002/adma.200600527Google Scholar
3 Zhu, G. H., Lee, H. Lan, Y. C. Wang, X. W. Joshi, G. Wang, D. Z. Yang, J. Vashaee, D. Guilbert, H., Pillitteri, A. Dresselhaus, M. S. Chen, G. and Ren, Z. F. Phys. Rev. Lett. 102(19) (2009), 196803.Google Scholar
4 Wang, X. W., Lee, H., Lan, Y. C. Zhu, G. H. Joshi, G. Wang, D. Z. Yang, J. Muto, A. J. Tang, M. Y. Klatsky, J. Song, S. Dresselhaus, M. S. Chen, G. and Ren, Z. F. Appl. Phys. Lett. 93(19) (2008), 193121.Google Scholar
5 Boukai, A. I., Bunimovich, Y. Tahir-Kheli, J., Yu, J.-K. Iii, W. A. Goddard, and Heath, J. R. Nature 451 (7175) (2008), 168.Google Scholar
6 Hochbaum, A. I., Chen, R. Delgado, R. D. Liang, W. Garnett, E. C. Najarian, M. Majumdar, A., and Yang, P. Nature 451(7175) (2008), 163.Google Scholar
7 Knipping, J., Wiggers, H. Rellinghaus, B. Roth, P. Konjhodzic, D. and Meier, C. J. Nanosci. Nanotech. 4 (2004), 1039.Google Scholar
8 Stegner, A. R., Pereira, R. N. Klein, K. Wiggers, H. Brandt, M. S. and Stutzmann, M. Physica B 401–402 (2007), 541.Google Scholar
9 Lechner, R., Wiggers, H. Ebbers, A. Steiger, J. Brandt, M. S. and Stutzmann, M. Phys. Stat. Sol. (RRL) 1(6) (2007), 262.10.1002/pssr.200701198Google Scholar
10 Takashiri, M., Borca-Tasciuc, T., Jacquot, A. Miyazaki, K. and Chen, G. J. Appl. Phys. 100(5) (2006), 054315.Google Scholar
11 Lee, H., Wang, D. Wang, W. Ren, Z. Klotz, B. Tang, M. Y. Yang, R. Gogna, P. Fleurial, J.-P., Dresselhaus, M. S. and Chen, G.. in International Conference on Thermoelectrics, ICT. 2005.Google Scholar
12 Meddins, H. R. and Parrot, J. E. J. Phys. C 9 (1976), 1263.Google Scholar
13 Rowe, D. M., Shukla, V. S. and Savvides, N. Nature 290 (1981), 765.Google Scholar
14 Weber, L. and Gmelin, E. Appl. Phys. A 53 (1991), 136.Google Scholar