Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-29T09:20:49.306Z Has data issue: false hasContentIssue false

Electron Beam Induced Current Studies of Nickel Silicide/Silicon Schottky Barrier Heights

Published online by Cambridge University Press:  28 February 2011

J.M. Gibson
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
D.C. Joy
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
R.T. Tung
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
J.L. Ellison
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
C. Pimentel
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
A.F.J. Levi
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
Get access

Abstract

We discuss the use of electron beam induced current measurements in a scanning electron microscope to deduce local Schottky barrier height with high spatial resolution. For theNiSi2/Si system, using UHV-prepared thin “templates”, wedemonstrate the uniformity of barrier heights for A or B single crystal films. In comparison, there is evidence for local variation of barrier height in mixed A+B films. Quantitative models for EBIC dependence on barrier height are discussed. Local variations in barrier height can be overlooked by other techniques and may be much more common than previously suspected.

Type
Research Article
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Brillson, L.J., Surf. Sci. Rep., 2, 123 (1982)CrossRefGoogle Scholar
2. Tung, R.T., Phys. Rev. Lett. 52,461 (1984)Google Scholar
3. Tung, R.T., Gibson, J.M. and Poate, J.M., Phys. Rev. Lett. 50, 429 (1983)CrossRefGoogle Scholar
4. Tung, R.T. and Gibson, J.M., J. Vac. Sci. Tech. A3, 987 (1985)Google Scholar
5. Liehr, M., Schmid, P.E., LeGoues, F.K. and Ho, P.S., Phys. Rev. Lett. 54, 2139 (1985)Google Scholar
6. Hauenstein, R.J., Schlesinger, T.E., McGill, T.C., Hunt, B.D. and Schowalter, L.J., Appl. Phys. Lett. 47, 853 (1985)CrossRefGoogle Scholar
7. Chiu, K.C., Poate, J.M., Rowe, J.E., Sheng, T.T. and Cullis, A.G., Appl. Phys. Lett. 38, 988 (1981)Google Scholar
8. Schmid, P.E., Ho, P.S., Foll, H. and Tan, T.Y., Phys. Rev. B28, 4593 (1983)CrossRefGoogle Scholar
9. Ishizaka, A., Nakagawa, K. and Shiraki, Y., in collected papers of the 2nd. Int. Symp. on MBE and Related Clean Surface Techniques, 27-30 Aug. 1982, p. 183Google Scholar
10.see for example the chapter by D. Holt in “Quantitative Scanning Electron Microscopy”, ed. D.B. Holt (Academic Press: London) 1984, p 213Google Scholar
11. Joy, D.C., Monte CarloGoogle Scholar
12. Bresse, J.F., SEM 1972 (IITRI: Chicago) p942Google Scholar
13. Donolato, C., Optik 52, 19, (1978)Google Scholar
14.H.-C.W. Huang, Aliotta, C.F. and Ho, P.S., Appl. Phys. Lett. 41, 54 (1982)Google Scholar
15. Sze, S., “Physics of Semiconductor Devices”, (Wiley-Interscience: New York), 1981Google Scholar
16.H.-C.W. Huang and Ho, P.S., Appl. Phys. Lett. 41,482 (1982)Google Scholar