Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-20T00:51:50.392Z Has data issue: false hasContentIssue false

Characterization of Nickel Induced Crystallized Silicon by Spectroscopic Ellipsometry

Published online by Cambridge University Press:  01 February 2011

Luis Pereira
Affiliation:
[email protected], Faculty of Science and Technology, New University of Lisbon, Materials Science Department, Campus da Caparica, Caparica, N/A, 2829-516, Portugal
Hugo Aguas
Affiliation:
[email protected], Faculty of Science and Technology, New University of Lisbon, Materials Science Department, Campus da Caparica, Caparica, N/A, 2829-516, Portugal
Manfred Beckers
Affiliation:
[email protected], Institute of Ion Beam Physics and Materials Research, Forschungszentrum Rossendorf, P.O.B. 510119, Dresden, N/A, 01314, Germany
Rui M. S. Martins
Affiliation:
[email protected], Institute of Ion Beam Physics and Materials Research, Forschungszentrum Rossendorf, P.O.B. 510119, Dresden, N/A, 01314, Germany
Elvira Fortunato
Affiliation:
[email protected], Faculty of Science and Technology, New University of Lisbon, Materials Science Department, Campus da Caparica, Caparica, N/A, 2829-516, Portugal
Rodrigo Martins
Affiliation:
[email protected], Faculty of Science and Technology, New University of Lisbon, Materials Science Department, Campus da Caparica, Caparica, N/A, 2829-516, Portugal
Get access

Abstract

In this work Spectroscopic Ellipsometry (SE) was used to study metal induced crystallization (MIC) on amorphous silicon films in order to analyze the influence of different annealing conditions on their structural properties. The variation of the metal thickness has shown to be determinant on the time needed to full crystallize silicon films. Films of 100 nm thickness crystallize after 2h at 500°C using 1 nm of Ni deposited on it. When reducing the average metal thickness down to 0.05 nm the same silicon film will need almost 10 hours to be totally crystallized. Using a new approach on the modelling procedure of the SE data we show to be possible to determine the Ni remaining inside the crystallized films. The method consists in using Ni as reference on the Bruggeman Effective Medium Approximation (BEMA) layer that will simulated the optical response of the crystallized silicon. Silicon samples and metal layers with different thicknesses were analyzed and this new method has shown to be sensible to changes on the initial metal/silicon ratio. The nickel distribution inside the silicon layers was independently measured by Rutherford Backscattering Spectroscopy (RBS) to check the data obtained from the proposed approach.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Brugggman, D. A. G., Ann. Phys. (Leipzig) 24 (1935) 636.Google Scholar
[2] Aspnes, D. E., Studna, A. A., Kinsbron, E., Phys. Rev. B, 29, 2 (1984) 768.Google Scholar
[3] Logothetidis, S., J. Appl. Phys., 65, 6 (1989) 2416.Google Scholar
[4] Petrik, P., Lohner, T., Fried, M., Biró, L. P., Kháhn, N. Q., Gyulai, J., Lehnert, W., Schneider, C., Ryssel, H, J. Appl. Phys., 87, 4 (2000) 1734.Google Scholar
[5] Petrik, P., Fried, M., Lohner, T., Berger, R., Bíró, L.P., Schneider, C., Gyulai, J., Ryssel, H., Thin Solid Films 313–314 (1998) 259. Google Scholar
[6] Pereira, L., Beckers, M., Martins, R.M.S., Fortunato, E., Martins, R., Mater. Res. Soc. Symp. Proc., 869 (2005) D2.5.1. Google Scholar
[7] Joshi, A. R., Krishnamohan, T., Saraswat, K. C., J. Appl. Phys., 93, 1 (2003) 175.Google Scholar
[8] Cheng, C. F., V. Poon, M. C., Kok, C. W., Chan, M., IEEE Trans. Electron. Devices, 50, 6, (2003) 1467.Google Scholar
[9] Jin, Z., Bhat, G. A., Yeung, M., Kwok, H. S., Wong, M., J. Appl. Phys., 84, 1 (1998) 194.Google Scholar
[10] Jang, J., Park, S. J., Kim, K. H., Cho, B. R., Kwak, W. K., Yoon, S. Y., J. Appl. Phys., 88, 5 (2000) 3099.Google Scholar
[11] He, D., Wang, J. Y., Mittemeijer, E. J., J. Appl. Phys., 97, (2005) 093524.Google Scholar
[12] Wong, M., Jin, Z., Bhat, G. A., Wong, P. C., Kwok, H. S., IEEE Trans. Electron. Devices, 47, 5 (2000) 1061.Google Scholar
[13] Mor, G. K., Malhotra, L. K., Bhattacharyya, D., J. Appl. Phys., 90, 4 (2001) 1795.Google Scholar
[14] Aspnes, D. E., Theeten, J. B., Hottier, F., Phys. Rev. B, 20, 8 (1979) 3292.Google Scholar
[15] Jellison, G.E. Jr, Chisholm, M. F., Gorbatkin, S. M., Appl. Phys. Lett., 62, 25 (1993) 3348.Google Scholar
[16] Pereira, L., Martins, R.M.S., Schell, N., Fortunato, E., Martins, R., Thin Solid Films 511–512 (2006) 275.Google Scholar
[17] Joshi, A. R., Krishnamoham, T., Saraswat, K. C., J. Appl. Phys. 93, 1 (2003) 175.Google Scholar