Hostname: page-component-7479d7b7d-8zxtt Total loading time: 0 Render date: 2024-07-08T18:30:44.351Z Has data issue: false hasContentIssue false

3D Photonic Crystals as Diffractive and Energy Selective Filter for Tandem Thin Film Solar Cells

Published online by Cambridge University Press:  01 February 2011

Ralf B. Wehrspohn
Affiliation:
[email protected], Martin-Luther-University Halle-Wittenberg, Physics, Heinrich-Damerow-Str. 4, Halle, 06120, Germany, +49 345 5589 100, +49 345 5589101
Andreas Bielawny
Affiliation:
[email protected], Martin-Luther-University Halle-Wittenberg, Physics, Heinrich-Damerow-Str. 4, Halle, 06120, Germany
Carsten Rockstuhl
Affiliation:
[email protected], University of Jena, Physics, Jena, 07743, Germany
Falk Lederer
Affiliation:
[email protected], University of Jena, Physics, Jena, 07743, Germany
Get access

Abstract

We suggest a photonic structure with energy selective and diffractive properties to be incorporated in thin-film tandem solar cells. Our device enhances the pathway of incident light within a amorphous silicon photovoltaic (PV) top cell in its spectral region of low optical absorption. This leads to an increase in the short-circuit current of the top cell. For a conductive inverted opal structure as intermiediate layer, we numerically determine an current increase of 1.44mA/cm2 for an a-Si:H / c-Si thin-film tandem cell corresponding to an increase in the absolute efficiency from 11.1% to 12.4%.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Yablonovitch, E., J. Opt. Soc. Am. 72, 899 (1982).Google Scholar
2. Sheng, P., Bloch, A. N., and Stepleman, R. S., Appl. Phys. Lett. 43, 579 (1983).Google Scholar
3. Green, M. A., Semicond. Sci. Technol. 8, 1 (1993).Google Scholar
4. Heine, C. and Morf, R. H., Appl. Opt. 34, 2476 (1995).Google Scholar
5. Stuart, H. R. and Hall, D. G., J. Optc. Soc. Am. A 14, 3001 (1997).Google Scholar
6. Terrazonni-Daudrix, V., Proceed. 3rd World Conf. on PV Energy 2, 1596 (2003).Google Scholar
7. Stiebig, H., Senoussaoui, N., Zahren, C., Haase, C., and Müller, J., Progr. Photov.: Res. Appl., DOI 10.1002/pip.694 (2006).Google Scholar
8. Trupke, T., Green, M. A., and Wüfel, P., J. Appl. Phys. 92, 4117 (2002).Google Scholar
9. Trupke, T., Green, M. A., and Würfel, P., J. Appl. Phys. 92, 1668 (2002).Google Scholar
10 Moon, R. L., James, L. W., Plas, H. A. Vander, Yep, T. O., Antypas, G. A. and Chai, Y., IEEE PVSC, 859 (1978)Google Scholar
11. Green, M., Third Generation Photovoltaics (Springer, Berlin, 2003).Google Scholar
12. Green, M., Solar Cells (Prentice-Hall, USA, 1982).Google Scholar
13. Stojano®, C. G., Tholl, H. D., and Kubitzke, R., SPIE Proceedings 823, 166 (1987).Google Scholar
14. Bielawny, A., Rhein, A. v., and Wehrspohn, R., SPIE Proc. 6197, 24 (2006).Google Scholar
15. Roschek, T., Mller, J., Wieder, S., Rech, B., and Wagner, H., Proceed. 16th E-PVSEC; Glasgow, U.K., 2000, p. p. 561 (2000).Google Scholar
16. Noda, S., Yamamot, N., Imada, M., Kobayashi, H., and Okano, M., J. Lightwave Techn. 17, 1948 (1999).Google Scholar
17. Busch, K., Koch, W., Enkrich, C., Deubel, M., and Wegener, M., Appl. Phys. Lett. 82, 1284 (2003).Google Scholar
18. Stefanou, N., Yannopapas, V., and Modinos, A., Comput. Phys. Commun. 113, 49 (1999).Google Scholar