Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-30T07:30:47.574Z Has data issue: false hasContentIssue false

Redox-active polymers (redoxmers) for electrochemical energy storage

Published online by Cambridge University Press:  16 September 2019

Mengxi Yang
Affiliation:
Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL60439, USA Joint Center for Energy Storage Research, Argonne National Laboratory, Lemont, IL60439, USA
Kewei Liu
Affiliation:
Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL60439, USA
Ilya A. Shkrob
Affiliation:
Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL60439, USA
Chen Liao*
Affiliation:
Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL60439, USA Joint Center for Energy Storage Research, Argonne National Laboratory, Lemont, IL60439, USA
*
Address all correspondence to Chen Liao at [email protected]
Get access

Abstract

Polymer redox-active materials (redoxmers) have numerous applications in the emerging electrochemical energy storage systems due to their structural versatility, fast-cycling ability, high theoretical capacity as electrode materials, sustainability, and recyclability. This review examines recent developments in improving the cycling performance of such materials and provides a vista on the future research directions.

Type
Prospective Articles
Copyright
Copyright © Materials Research Society 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Both authors contributed equally.

References

1.Capuano, L.: International Energy Outlook, 2018 (accessed 7 November).Google Scholar
2.Gür, T.M.: Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage. Energ. Environ. Sci. 11, 26962767 (2018).CrossRefGoogle Scholar
3.Wang, W., Luo, Q., Li, B., Wei, X., Li, L., and Yang, Z.: Recent progress in redox flow battery research and development. Adv. Funct. Mater. 23, 970986 (2013).CrossRefGoogle Scholar
4.Liang, Y., Tao, Z., and Chen, J.: Organic electrode materials for rechargeable lithium batteries. Adv. Energy Mater. 2, 742769 (2012).CrossRefGoogle Scholar
5.Muench, S., Wild, A., Friebe, C., Häupler, B., Janoschka, T., and Schubert, U.S.: Polymer-based organic batteries. Chem. Rev. 116, 94389484 (2016).CrossRefGoogle ScholarPubMed
6.Zhang, H., Armand, M., and Rojo, T.: Innovative polymeric materials for better rechargeable batteries: strategies from CIC Energigune. J. Electrochem. Soc. 166, A679A686 (2019).CrossRefGoogle Scholar
7.Song, Z., Qian, Y., Gordin, M.L., Tang, D., Xu, T., Otani, M., Zhan, H., Zhou, H., and Wang, D.: Polyanthraquinone as a reliable organic electrode for stable and fast lithium storage. Angew. Chem. Int. Ed. 54, 1394713951 (2015).10.1002/anie.201506673CrossRefGoogle ScholarPubMed
8.Sasada, Y., Langford, S.J., Oyaizu, K., and Nishide, H.: Poly(norbornyl-NDIs) as a potential cathode-active material in rechargeable charge storage devices. RSC Adv. 6, 4291142916 (2016).10.1039/C6RA06103FCrossRefGoogle Scholar
9.Maniam, S., Oka, K., and Nishide, H.: N-Phenyl naphthalene diimide pendant polymer as a charge storage material with high rate capability and cyclability. MRS Commun. 7, 967973 (2017).CrossRefGoogle Scholar
10.Schon, T.B., Tilley, A.J., Kynaston, E.L., and Seferos, D.S.: Three-dimensional arylene diimide frameworks for highly stable lithium ion batteries. ACS Appl. Mater. Inter. 9, 1563115637 (2017).CrossRefGoogle ScholarPubMed
11.Tokue, H., Murata, T., Agatsuma, H., Nishide, H., and Oyaizu, K.: Charge–discharge with rocking-chair-type Li+ migration characteristics in a zwitterionic radical copolymer composed of TEMPO and trifluoromethanesulfonylimide with carbonate electrolytes for a high-rate Li-ion battery. Macromolecules 50, 19501958 (2017).10.1021/acs.macromol.6b02404CrossRefGoogle Scholar
12.Suga, T., Konishi, H., and Nishide, H.: Photocrosslinked nitroxide polymer cathode-active materials for application in an organic-based paper battery. Chem. Comm. 17301732 (2007).CrossRefGoogle Scholar
13.Karlsson, C., Suga, T., and Nishide, H.: Quantifying TEMPO redox polymer charge transport toward the organic radical battery. ACS Appl. Mater. Inter. 9, 1069210698 (2017).CrossRefGoogle ScholarPubMed
14.Koshika, K., Chikushi, N., Sano, N., Oyaizu, K., and Nishide, H.: A TEMPO-substituted polyacrylamide as a new cathode material: an organic rechargeable device composed of polymer electrodes and aqueous electrolyte. Green Chem. 12, 15731575 (2010).CrossRefGoogle Scholar
15.Li, G., Zhang, B., Wang, J., Zhao, H., Ma, W., Xu, L., Zhang, W., Zhou, K., Du, Y., and He, G.: Electrochromic poly(chalcogenoviologen)s as anode materials for high-performance organic radical lithium-ion batteries. Angew. Chem. Int. Ed 58, 84688473 (2019).CrossRefGoogle Scholar
16.Casado, N., Hernández, G., Veloso, A., Devaraj, S., Mecerreyes, D., and Armand, M.: PEDOT radical polymer with synergetic redox and electrical properties. ACS Macro Lett. 5, 5964 (2016).CrossRefGoogle ScholarPubMed
17.Aldalur, I., Martinez-Ibañez, M., Piszcz, M., Zhang, H., and Armand, M.: Self-standing highly conductive solid electrolytes based on block copolymers for rechargeable all-solid-state lithium-metal batteries. Batteries Supercaps 1, 149159 (2018).CrossRefGoogle Scholar
18.Xing, L., Li, W., Wang, C., Gu, F., Xu, M., Tan, C., and Yi, J.: Theoretical investigations on oxidative stability of solvents and oxidative decomposition mechanism of ethylene carbonate for lithium ion battery use. J. Phys. Chem. B 113, 1659616602 (2009).10.1021/jp9074064CrossRefGoogle ScholarPubMed
19.Grugeon, S., Jankowski, P., Cailleu, D., Forestier, C., Sannier, L., Armand, M., Johansson, P., and Laruelle, S.: Towards a better understanding of vinylene carbonate derived SEI-layers by synthesis of reduction compounds. J. Power Sources 427, 7784 (2019).CrossRefGoogle Scholar
20.Xu, G.-L., Liu, Q., Lau, K.K.S., Liu, Y., Liu, X., Gao, H., Zhou, X., Zhuang, M., Ren, Y., Li, J., Shao, M., Ouyang, M., Pan, F., Chen, Z., Amine, K., and Chen, G.: Building ultraconformal protective layers on both secondary and primary particles of layered lithium transition metal oxide cathodes. Nat. Energy 4, 484494 (2019).CrossRefGoogle Scholar
21.Zhou, D., Chen, Y., Li, B., Fan, H., Cheng, F., Shanmukaraj, D., Rojo, T., Armand, M., and Wang, G.: A stable quasi-solid-state sodium–sulfur battery. Angew. Chem. 130, 1032510329 (2018).CrossRefGoogle Scholar
22.Castillo-Martínez, E., Carretero-González, J., and Armand, M.: Polymeric schiff bases as low-voltage redox centers for sodium-ion batteries. Angew. Chem. Int. Ed. 53, 53415345 (2014).CrossRefGoogle ScholarPubMed
23.Zhao, Q., Gaddam, R.R., Yang, D., Strounina, E., Whittaker, A.K., and Zhao, X.S.: Pyromellitic dianhydride-based polyimide anodes for sodium-ion batteries. Electrochim. Acta 265, 702708 (2018).CrossRefGoogle Scholar
24.Bančič, T., Bitenc, J., Pirnat, K., Kopač Lautar, A., Grdadolnik, J., Randon Vitanova, A., and Dominko, R.: Electrochemical performance and redox mechanism of naphthalene-hydrazine diimide polymer as a cathode in magnesium battery. J. Power Sources 395, 2530 (2018).CrossRefGoogle Scholar
25.Vizintin, A., Bitenc, J., Kopač Lautar, A., Pirnat, K., Grdadolnik, J., Stare, J., Randon-Vitanova, A., and Dominko, R.: Probing electrochemical reactions in organic cathode materials via in operando infrared spectroscopy. Nat. Comm. 9, 661 (2018).10.1038/s41467-018-03114-1CrossRefGoogle ScholarPubMed
26.Pan, B., Huang, J., Feng, Z., Zeng, L., He, M., Zhang, L., Vaughey, J.T., Bedzyk, M.J., Fenter, P., Zhang, Z., Burrell, A.K., and Liao, C.: Polyanthraquinone-based organic cathode for high-performance rechargeable magnesium-ion batteries. Adv. Energy Mater. 6, 1600140 (2016).CrossRefGoogle Scholar
27.Dong, H., Liang, Y., Tutusaus, O., Mohtadi, R., Zhang, Y., Hao, F., and Yao, Y.: Directing Mg-storage chemistry in organic polymers toward high-energy Mg batteries. Joule 3, 782793 (2019).10.1016/j.joule.2018.11.022CrossRefGoogle Scholar
28.Simmonds, A.G., Griebel, J.J., Park, J., Kim, K.R., Chung, W.J., Oleshko, V.P., Kim, J., Kim, E.T., Glass, R.S., Soles, C.L., Sung, Y.-E., Char, K., and Pyun, J.: Inverse vulcanization of elemental sulfur to prepare polymeric electrode materials for Li–S batteries. ACS Macro Lett. 3, 229232 (2014).10.1021/mz400649wCrossRefGoogle Scholar
29.Dirlam, P.T., Simmonds, A.G., Kleine, T.S., Nguyen, N.A., Anderson, L.E., Klever, A.O., Florian, A., Costanzo, P.J., Theato, P., Mackay, M.E., Glass, R.S., Char, K., and Pyun, J.: Inverse vulcanization of elemental sulfur with 1,4-diphenylbutadiyne for cathode materials in Li–S batteries. RSC Adv. 5, 2471824722 (2015).CrossRefGoogle Scholar
30.Wei, Y., Li, X., Xu, Z., Sun, H., Zheng, Y., Peng, L., Liu, Z., Gao, C., and Gao, M.: Solution processible hyperbranched inverse-vulcanized polymers as new cathode materials in Li–S batteries. Polym. Chem. 6, 973982 (2015).CrossRefGoogle Scholar
31.Liu, Z.J., Kong, L.B., Zhou, Y.H., and Zhan, C.M.: Polyanthra[1,9,8-b,c,d,e][4,10,5-b,c,d,e]bis-[1,6,6a(6a-S) trithia]pentalene-active material for cathode of lithium secondary battery with unusually high specific capacity. J. Power Sources 161, 13021306 (2006).CrossRefGoogle Scholar
32.Preefer, M.B., Oschmann, B., Hawker, C.J., Seshadri, R., and Wudl, F.: High sulfur content material with stable cycling in lithium-sulfur batteries. Angew. Chem. Int. Ed. 56, 1511815122 (2017).CrossRefGoogle ScholarPubMed
33.Liu, Y., Haridas, A.K., Cho, K.-K., Lee, Y., and Ahn, J.-H.: Highly ordered mesoporous sulfurized polyacrylonitrile cathode material for high-rate lithium sulfur batteries. J. Phys. Chem. C 121, 2617226179 (2017).10.1021/acs.jpcc.7b06625CrossRefGoogle Scholar
34.Bachman, J.C., Kavian, R., Graham, D.J., Kim, D.Y., Noda, S., Nocera, D.G., Shao-Horn, Y., and Lee, S.W.: Electrochemical polymerization of pyrene derivatives on functionalized carbon nanotubes for pseudocapacitive electrodes. Nat. Commun. 6, 7040 (2015).CrossRefGoogle ScholarPubMed
35.Xu, Y., Lin, Z., Huang, X., Wang, Y., Huang, Y., and Duan, X.: Functionalized graphene hydrogel-based high-performance supercapacitors. Adv. Mater. 25, 57795784 (2013).CrossRefGoogle ScholarPubMed
36.Oka, K., Kato, R., Oyaizu, K., and Nishide, H.: Poly(vinyldibenzothiophenesulfone): its redox capability at very negative potential toward an all-organic rechargeable device with high-energy density. Adv. Funct. Mater. 28, 1805858 (2018).CrossRefGoogle Scholar
37.Xie, J., Wang, Z.L., Xu, Z.C.J., and Zhang, Q.C.: Toward a high-performance all-plastic full battery with a single organic polymer as both cathode and anode. Adv. Energy Mater. 8, 1703509 (2018).CrossRefGoogle Scholar
38.Nakahara, K., Iwasa, S., Satoh, M., Morioka, Y., Iriyama, J., Suguro, M., and Hasegawa, E.: Rechargeable batteries with organic radical cathodes. Chem. Phys. Lett. 359, 351354 (2002).CrossRefGoogle Scholar
39.Zhang, H., Eshetu, G.G., Judez, X., Li, C., Rodriguez-Martínez, L.M., and Armand, M.: Electrolyte additives for lithium metal anodes and rechargeable lithium metal batteries: progress and perspectives. Angew. Chem. Int. Ed. 57, 1500215027 (2018).CrossRefGoogle Scholar
40.Appapillai, A.T., Mansour, A.N., Cho, J., and Shao-Horn, Y.: Microstructure of LiCoO2 with and without “AlPO4” nanoparticle coating: combined STEM and XPS studies. Chem. Mater. 19, 57485757 (2007).CrossRefGoogle Scholar
41.Li, X., Liu, J., Banis, M.N., Lushington, A., Li, R., Cai, M., and Sun, X.: Atomic layer deposition of solid-state electrolyte coated cathode materials with superior high-voltage cycling behavior for lithium ion battery application. Energ. Environ. Sci. 7, 768778 (2014).10.1039/C3EE42704HCrossRefGoogle Scholar
42.Lee, K.-S., Myung, S.-T., Amine, K., Yashiro, H., and Sun, Y.-K.: Dual functioned BiOF-coated Li[Li0.1Al0.05Mn1.85]O4 for lithium batteries. J. Mater. Chem. 19, 19952005 (2009).CrossRefGoogle Scholar
43.Yan, P., Zheng, J., Chen, T., Luo, L., Jiang, Y., Wang, K., Sui, M., Zhang, J.-G., Zhang, S., and Wang, C.: Coupling of electrochemically triggered thermal and mechanical effects to aggravate failure in a layered cathode. Nat. Commun. 9, 2437 (2018).CrossRefGoogle Scholar
44.Slater, M.D., Kim, D., Lee, E., and Johnson, C.S.: Sodium-ion batteries. Adv. Funct. Mater. 23, 947958 (2013).10.1002/adfm.201200691CrossRefGoogle Scholar
45.Canepa, P., Bo, S.-H., Sai Gautam, G., Key, B., Richards, W.D., Shi, T., Tian, Y., Wang, Y., Li, J., and Ceder, G.: High magnesium mobility in ternary spinel chalcogenides. Nat. Chem. 8, 1759 (2017).Google ScholarPubMed
46.Incorvati, J.T., Wan, L.F., Key, B., Zhou, D., Liao, C., Fuoco, L., Holland, M., Wang, H., Prendergast, D., Poeppelmeier, K.R., and Vaughey, J.T.: Reversible magnesium intercalation into a layered oxyfluoride cathode. Chem. Mater. 28, 1720 (2016).CrossRefGoogle Scholar
47.Yu, C., Wang, C., Liu, X., Jia, X., Naficy, S., Shu, K., Forsyth, M., and Wallace, G.G.: A cytocompatible robust hybrid conducting polymer hydrogel for use in a magnesium battery. Adv. Mater. 28, 93499355 (2016).CrossRefGoogle Scholar
48.Jia, X., Wang, C., Ranganathan, V., Napier, B., Yu, C., Chao, Y., Forsyth, M., Omenetto, F.G., MacFarlane, D.R., and Wallace, G.G.: A biodegradable thin-film magnesium primary battery using silk fibroin–ionic liquid polymer electrolyte. ACS Energy Lett. 2, 831836 (2017).CrossRefGoogle Scholar
49.Bruce, P.G., Freunberger, S.A., Hardwick, L.J., and Tarascon, J.-M.: Li–O2 and Li–S batteries with high energy storage. Nat. Mater. 11, 19 (2011).10.1038/nmat3191CrossRefGoogle ScholarPubMed
50.Melot, B.C. and Tarascon, J.M.: Design and preparation of materials for advanced electrochemical storage. Acc. Chem. Rev. 46, 12261238 (2013).CrossRefGoogle ScholarPubMed
51.Ji, X. and Nazar, L.F.: Advances in Li–S batteries. J. Mater. Chem. 20, 98219826 (2010).CrossRefGoogle Scholar
52.Kang, K., Meng, Y.S., Bréger, J., Grey, C.P., and Ceder, G.: Electrodes with high power and high capacity for rechargeable lithium batteries. Science 311, 977980 (2006).CrossRefGoogle ScholarPubMed
53.Mikhaylik, Y.V. and Akridge, J.R.: Polysulfide shuttle study in the Li/S battery system. J. Electrochem. Soc. 151, A1969A1976 (2004).CrossRefGoogle Scholar
54.Liang, X., Hart, C., Pang, Q., Garsuch, A., Weiss, T., and Nazar, L.F.: A highly efficient polysulfide mediator for lithium–sulfur batteries. Nat. Commun. 6, 5682 (2015).10.1038/ncomms6682CrossRefGoogle ScholarPubMed
55.Xu, W., Wang, J., Ding, F., Chen, X., Nasybulin, E., Zhang, Y., and Zhang, J.-G.: Lithium metal anodes for rechargeable batteries. Energ. Environ. Sci. 7, 513537 (2014).CrossRefGoogle Scholar
56.Liu, B., Zhang, J.-G., and Xu, W.: Advancing lithium metal batteries. Joule 2, 833845 (2018).CrossRefGoogle Scholar
57.Yu, X. and Manthiram, A.: Electrode–electrolyte interfaces in lithium-based batteries. Energ. Environ. Sci. 11, 527543 (2018).10.1039/C7EE02555FCrossRefGoogle Scholar
58.Ji, X., Lee, K.T., and Nazar, L.F.: A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat. Mater. 8, 500 (2009).10.1038/nmat2460CrossRefGoogle ScholarPubMed
59.Wei, H., Rodriguez, E.F., Best, A.S., Hollenkamp, A.F., Chen, D., and Caruso, R.A.: Chemical bonding and physical trapping of sulfur in mesoporous magnéli Ti4O7 microspheres for high-performance Li–S battery. Adv. Energy Mater. 7, 1601616 (2017).CrossRefGoogle Scholar
60.Lei, D., Shi, K., Ye, H., Wan, Z., Wang, Y., Shen, L., Li, B., Yang, Q.-H., Kang, F., and He, Y.-B.: Progress and perspective of solid-state lithium–sulfur batteries. Adv. Funct. Mater. 28, 1707570 (2018).CrossRefGoogle Scholar
61.Lacey, M.J., Jeschull, F., Edström, K., and Brandell, D.: Porosity blocking in highly porous carbon black by PVdF binder and its implications for the Li–S system. J. Phys. Chem. C 118, 2589025898 (2014).10.1021/jp508137mCrossRefGoogle Scholar
62.Cheng, Z., Pan, H., Zhong, H., Xiao, Z., Li, X., and Wang, R.: Porous organic polymers for polysulfide trapping in lithium–sulfur batteries. Adv. Funct. Mater. 28, 1707597 (2018).CrossRefGoogle Scholar
63.Schneider, H., Garsuch, A., Panchenko, A., Gronwald, O., Janssen, N., and Novák, P.: Influence of different electrode compositions and binder materials on the performance of lithium–sulfur batteries. J. Power Sources 205, 420425 (2012).CrossRefGoogle Scholar
64.Chung, W.J., Griebel, J.J., Kim, E.T., Yoon, H., Simmonds, A.G., Ji, H.J., Dirlam, P.T., Glass, R.S., Wie, J.J., Nguyen, N.A., Guralnick, B.W., Park, J., Somogyi, Á, Theato, P., Mackay, M.E., Sung, Y.-E., Char, K., and Pyun, J.: The use of elemental sulfur as an alternative feedstock for polymeric materials. Nat. Chem. 5, 518 (2013).CrossRefGoogle ScholarPubMed
65.Griebel, J.J., Li, G., Glass, R.S., Char, K., and Pyun, J.: Kilogram scale inverse vulcanization of elemental sulfur to prepare high capacity polymer electrodes for Li-S batteries. J. Polym. Sci. Pol. Chem. 53, 173177 (2015).CrossRefGoogle Scholar
66.Oschmann, B., Park, J., Kim, C., Char, K., Sung, Y.-E., and Zentel, R.: Copolymerization of polythiophene and sulfur to improve the electrochemical performance in lithium–sulfur batteries. Chem. Mater. 27, 70117017 (2015).CrossRefGoogle Scholar
67.Wu, F., Chen, S., Srot, V., Huang, Y., Sinha, S.K., van Aken, P.A., Maier, J., and Yu, Y.: A sulfur–limonene-based electrode for lithium–sulfur batteries: high-performance by self-protection. Adv. Mater. 30, 1706643 (2018).CrossRefGoogle ScholarPubMed
68.Berk, H., Balci, B., Ertan, S., Kaya, M., and Cihaner, A.: Functionalized polysulfide copolymers with 4-vinylpyridine via inverse vulcanization. Mater. Today Commun. 19, 336341 (2019).CrossRefGoogle Scholar
69.Doeff, M.M., Lerner, M.M., Visco, S.J., and De Jonghe, L.C.: The use of polydisulfides and copolymeric disulfides in the Li/PEO/SRPE battery system. J. Electrochem. Soc. 139, 20772081 (1992).CrossRefGoogle Scholar
70.Kim, H., Lee, J., Ahn, H., Kim, O., and Park, M.J.: Synthesis of three-dimensionally interconnected sulfur-rich polymers for cathode materials of high-rate lithium–sulfur batteries. Nat. Commun. 6, 7278 (2015).CrossRefGoogle ScholarPubMed
71.Trofimov, B.A., Vasil'tsov, A.M., Petrova, O.V., Mikhaleva, A.I., Myachina, G.F., Korzhova, S.A., Skotheim, T.A., Mikhailik, Y.V., and Vakul'skaya, T.I.: Sulfurization of polymers. 6. Poly(vinylene polysulfide), poly(thienothiophene), and related structures from polyacetylene and elemental sulfur. Russ. Chem. Bull. 51, 17091714 (2002).CrossRefGoogle Scholar
72.Fanous, J., Wegner, M., Grimminger, J., Andresen, Ä, and Buchmeiser, M.R.: Structure-related electrochemistry of sulfur-poly(acrylonitrile) composite cathode materials for rechargeable lithium batteries. Chem. Mater. 23, 50245028 (2011).CrossRefGoogle Scholar
73.Wei, S., Ma, L., Hendrickson, K.E., Tu, Z., and Archer, L.A.: Metal–sulfur battery cathodes based on PAN–sulfur composites. J. Am. Chem. Soc. 137, 1214312152 (2015).10.1021/jacs.5b08113CrossRefGoogle ScholarPubMed
74.Lau, K.-C., Shkrob, I.A., Dietz Rago, N.L., Connell, J.G., Phelan, D., Hu, B., Zhang, L., Zhang, Z., and Liao, C.: Improved performance through tight coupling of redox cycles of sulfur and 2,6-polyanthraquinone in lithium–sulfur batteries. J. Mater. Chem. A 5, 2410324109 (2017).10.1039/C7TA08129DCrossRefGoogle Scholar
75.DeBlase, C.R., Silberstein, K.E., Truong, T.-T., Abruña, H.D., and Dichtel, W.R.: β-Ketoenamine-linked covalent organic frameworks capable of pseudocapacitive energy storage. J. Am. Chem. Soc. 135, 1682116824 (2013).CrossRefGoogle ScholarPubMed
76.Zeigler, D.F., Candelaria, S.L., Mazzio, K.A., Martin, T.R., Uchaker, E., Suraru, S.-L., Kang, L.J., Cao, G., and Luscombe, C.K.: N-Type hyperbranched polymers for supercapacitor cathodes with variable porosity and excellent electrochemical stability. Macromolecules 48, 51965203 (2015).CrossRefGoogle Scholar
77.Zhou, H., Zhi, X., and Zhai, H.-J.: Promoted supercapacitive performances of electrochemically synthesized poly(3,4-ethylenedioxythiophene) incorporated with manganese dioxide. J. Mater. Sci. Mater. Elect. 29, 39353942 (2018).10.1007/s10854-017-8333-0CrossRefGoogle Scholar
78.Zhou, H., Zhai, H.-J., and Han, G.: Superior performance of highly flexible solid-state supercapacitor based on the ternary composites of graphene oxide supported poly(3,4-ethylenedioxythiophene)-carbon nanotubes. J. Power Sources 323, 125133 (2016).10.1016/j.jpowsour.2016.05.049CrossRefGoogle Scholar
79.Hatakeyama-Sato, K., Wakamatsu, H., Yamagishi, K., Fujie, T., Takeoka, S., Oyaizu, K., and Nishide, H.: Ultrathin and stretchable rechargeable devices with organic polymer nanosheets conformable to skin surface. Small 15, 1805296 (2019).10.1002/smll.201805296CrossRefGoogle ScholarPubMed
80.Zhu, X., Zhao, R., Deng, W., Ai, X., Yang, H., and Cao, Y.: An all-solid-state and all-organic sodium-ion battery based on redox-active polymers and plastic crystal electrolyte. Electrochim. Acta 178, 5559 (2015).CrossRefGoogle Scholar
81.Weng, Y., Xu, S., Huang, G., and Jiang, C.: Synthesis and performance of Li[(Ni1/3Co1/3Mn1/3)1−xMgx]O2 prepared from spent lithium ion batteries. J. Hazard. Mater. 246–247, 163172 (2013).CrossRefGoogle Scholar
82.Yang, Y., Huang, G., Xu, S., He, Y., and Liu, X.: Thermal treatment process for the recovery of valuable metals from spent lithium-ion batteries. Hydrometallurgy 165, 390396 (2016).10.1016/j.hydromet.2015.09.025CrossRefGoogle Scholar
83.Zhang, T., He, Y., Wang, F., Ge, L., Zhu, X., and Li, H.: Chemical and process mineralogical characterizations of spent lithium-ion batteries: an approach by multi-analytical techniques. Waste Manage. 34, 10511058 (2014).CrossRefGoogle ScholarPubMed
84.Chen, H., Armand, M., Demailly, G., Dolhem, F., Poizot, P., and Tarascon, J.-M.: From biomass to a renewable LiXC6O6 organic electrode for sustainable Li-ion batteries. ChemSusChem 1, 348355 (2008).CrossRefGoogle ScholarPubMed
85.Armand, M., and Tarascon, J.M.: Building better batteries. Nature 451, 652 (2008).10.1038/451652aCrossRefGoogle ScholarPubMed
86.Hoefling, A., Lee, Y.J., and Theato, P.: Sulfur-based polymer composites from vegetable oils and elemental sulfur: a sustainable active material for Li–S batteries. Macromol. Chem. Phys. 218, 1600303 (2017).CrossRefGoogle Scholar