Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-17T19:19:11.343Z Has data issue: false hasContentIssue false

Morphological stability during electrodeposition

Published online by Cambridge University Press:  21 June 2017

Raúl A. Enrique
Affiliation:
Joint Center for Energy Research Storage, and Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
Stephen DeWitt
Affiliation:
Joint Center for Energy Research Storage, and Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
Katsuyo Thornton*
Affiliation:
Joint Center for Energy Research Storage, and Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
*
Address all Correspondence to Katsuyo Thornton at [email protected]
Get access

Abstract

The uniform electrodeposition of certain materials, such as Li metal, remains elusive because the mechanisms controlling growth instability are not fully understood. To determine the conditions that lead to either stable or unstable deposition, we develop a phase-field model for the growth of multiple deposits in a binary electrolyte and examine the behavior as the kinetic parameters are varied. We find that the second Damköhler number, defined as the ratio between the reaction and the mass transfer fluxes, is an indicator of deposition instability. Our results suggest that controlling reaction kinetics and initial roughness are essential in achieving stable electrodeposition.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Gamburg, Y.D. and Zangari, G.: Theory and Practice of Metal Electrodeposition. (Springer, New York, 2011).Google Scholar
2.Barton, J.L. and Bockris, J.O.: The electrolytic growth of dendrites from ionic solutions. Proc. R. Soc. A Math. Phys. Eng. Sci. 268, 485505 (1962).Google Scholar
3.Monroe, C. and Newman, J.: Dendrite growth in lithium/polymer systems. J. Electrochem. Soc. 150, A1377 (2003).Google Scholar
4.Akolkar, R.: Modeling dendrite growth during lithium electrodeposition at sub-ambient temperature. J. Power Sources 246, 8489 (2014).Google Scholar
5.Ding, F., Xu, W., Graff, G.L., Zhang, J., Sushko, M.L., Chen, X., Shao, Y., Engelhard, M.H., Nie, Z., Xiao, J., Liu, X., Sushko, P.V., Liu, J. and Zhang, J.-G.: Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J. Am. Chem. Soc. 135, 44504456 (2013).Google Scholar
6.Goldenfeld, N.: Dynamics of dendritic growth. J. Power Sources 26, 121128 (1989).Google Scholar
7.Sundström, L.-G. and Bark, F.H.: On morphological instability during electrodeposition with a stagnant binary electrolyte. Electrochim. Acta 40, 599614 (1995).Google Scholar
8.DeWitt, S., Hahn, N., Zavadil, K. and Thornton, K.: Computational examination of orientation-dependent morphological evolution during the electrodeposition and electrodissolution of magnesium. J. Electrochem. Soc. 163, A513A521 (2015).Google Scholar
9.Xu, W., Wang, J., Ding, F., Chen, X., Nasybulin, E., Zhang, Y. and Zhang, J.-G.: Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 7, 513537 (2014).Google Scholar
10.Okajima, Y., Shibuta, Y. and Suzuki, T.: A phase-field model for electrode reactions with Butler–Volmer kinetics. Comput. Mater. Sci. 50, 118124 (2010).Google Scholar
11.Liang, L. and Chen, L.-Q.: Nonlinear phase field model for electrodeposition in electrochemical systems. Appl. Phys. Lett. 105, 263903 (2014).Google Scholar
12.Ely, D.R., Jana, A. and García, R.E.: Phase field kinetics of lithium electrodeposits. J. Power Sources 272, 581594 (2014).Google Scholar
13.Orvananos, B., Ferguson, T.R., Yu, H.-C., Bazant, M.Z. and Thornton, K.: Particle-level modeling of the charge–discharge behavior of nanoparticulate phase-separating Li-ion battery electrodes. J. Electrochem. Soc. 161, A535A546 (2014).Google Scholar
14.Moelans, N., Blanpain, B. and Wollants, P.: Quantitative analysis of grain boundary properties in a generalized phase field model for grain growth in anisotropic systems. Phys. Rev. B 78, 24113 (2008).Google Scholar
15.Cahn, J.W. and Hilliard, J.E.: Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28, 258267 (1958).Google Scholar
16.Allen, S.M. and Cahn, J.W.: A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27, 10851095 (1979).Google Scholar
17.Chazalviel, J.N.: Electrochemical aspects of the generation of ramified metallic electrodeposits. Phys. Rev. A 42, 73557367 (1990).Google Scholar
18.Nielsen, C. P. and Bruus, H.: Morphological instability during steady electrodeposition at overlimiting currents. Phys. Rev. E 92, 052310 (2015).Google Scholar
19.Yu, H.-C., Chen, H.-Y. and Thornton, K.: Extended smoothed boundary method for solving partial differential equations with general boundary conditions on complex boundaries. Model. Simul. Mater. Sci. Eng. 20, 75008 (2012).Google Scholar
20.Fogler, H.S.: Elements of Chemical Reaction Engineering (Prentice Hall, Upper Saddle River, NJ, 2006).Google Scholar
21.Lee, S.-I., Jung, U.-H., Kim, Y.-S., Kim, M.-H., Ahn, D.-J. and Chun, H.-S.: A study of electrochemical kinetics of lithium ion in organic electrolytes. Korean J. Chem. Eng. 19, 638644 (2002).Google Scholar
22.Banik, S.J. and Akolkar, R.: Suppressing dendrite growth during zinc electrodeposition by PEG-200 additive. J. Electrochem. Soc. 160, D519D523 (2013).Google Scholar
23.Wagner, C.: Theoretical analysis of the current density distribution in electrolytic cells. J. Electrochem. Soc. 98, 116 (1951).Google Scholar
24.Arneodo, A., Argoul, F., Couder, Y. and Rabaud, M.: Anisotropic Laplacian growths: from diffusion-limited aggregates to dendritic fractals. Phys. Rev. Lett. 66, 23322335 (1991).Google Scholar
25.Crowther, O. and West, A.C.: Effect of electrolyte composition on lithium dendrite growth. J. Electrochem. Soc. 155, A806 (2008).Google Scholar
26.Zhang, Y., Qian, J., Xu, W., Russell, S.M., Chen, X., Nasybulin, E., Bhattacharya, P., Engelhard, M.H., Mei, D., Cao, R., Ding, F., Cresce, A.V., Xu, K. and Zhang, J.-G.: Dendrite-free lithium deposition with self-aligned nanorod structure. Nano Lett. 14, 68896896 (2014).Google Scholar
27.Mehdi, B.L., Qian, J., Nasybulin, E., Park, C., Welch, D.A., Faller, R., Mehta, H., Henderson, W.A., Xu, W., Wang, C.M., Evans, J.E., Liu, J., Zhang, J.-G., Mueller, K.T. and Browning, N.D.: Observation and quantification of nanoscale processes in lithium batteries by operando electrochemical (S)TEM. Nano Lett. 15, 21682173 (2015).Google Scholar
28.Leenheer, A.J., Jungjohann, K.L., Zavadil, K.R., Sullivan, J.P. and Harris, C.T.: Lithium electrodeposition dynamics in aprotic electrolyte observed in situ via transmission electron microscopy. ACS Nano 9, 43794389 (2015).Google Scholar
29.Cogswell, D.A.: Quantitative phase-field modeling of dendritic electrodeposition. Phys. Rev. E 92, 11301 (2015).Google Scholar
30.Steiger, J., Kramer, D. and Mönig, R.: Mechanisms of dendritic growth investigated by in situ light microscopy during electrodeposition and dissolution of lithium. J. Power Sources 261, 112119 (2014).Google Scholar
Supplementary material: PDF

Enrique supplementary material

Enrique supplementary material

Download Enrique supplementary material(PDF)
PDF 1.9 MB