Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-30T10:32:52.907Z Has data issue: false hasContentIssue false

Surface functionalization of polypropylene and polyethylene films with allylamine by γ radiation

Published online by Cambridge University Press:  16 November 2018

M. Pérez-Calixto
Affiliation:
Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Ciudad Universitaria 04510, CDMX, Mexico
G. González-Pérez
Affiliation:
Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Ciudad Universitaria 04510, CDMX, Mexico
N. Dionisio
Affiliation:
Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Ciudad Universitaria 04510, CDMX, Mexico
E. Bucio
Affiliation:
Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Ciudad Universitaria 04510, CDMX, Mexico
G. Burillo*
Affiliation:
Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Ciudad Universitaria 04510, CDMX, Mexico
L. García-Uriostegui
Affiliation:
CONACyT—Wood, Cellulose and Paper Research Department, University of Guadalajara, Guadalajara 44100, Jalisco, Mexico
*
Address all correspondence to G. Burillo at [email protected]
Get access

Abstract

Allylamine (AA)-functionalized surfaces for cell adhesion and tissue engineering generated by plasma reactions present several disadvantages, such as amine degradation after 1 week of storage in air and difficulty in achieving a highly specific surface functionalization. In this work, polypropylene (PP) and polyethylene (PE) films were functionalized with AA by γ irradiation to enhance adhesion and compatibility without changing intrinsic bulk properties, thus avoiding the disadvantages of plasma synthesis. Irradiation grafting was realized by a direct and pre-irradiation oxidation method. The effect of different parameters studied were characterized by Fourier transform infrared spectra, thermogravimetric analysis, differential scanning calorimetry, scanning electron microscopy, and contact angle measurements.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Siow, K.S., Britcher, L., Kumar, S., and Griesser, H.J.: Plasma methods for the generation of chemical reactive surfaces for biomolecule immobilization and cell colonization. A review. Plasma Process. Polym. 3, 392 (2006).Google Scholar
2.Forch, R., Zhang, Z., and Knoll, W.: Soft plasma treated surface tailoring of structure and properties for biomaterial applications. Plasma Process. Polym. 2, 351 (2005).Google Scholar
3.Meyer-Plath, A.A., Schroder, K., Finke, B., and Ohl, A.: Current trends in biomaterial surface functionalization-nitrogen containing plasma assisted processes with enhanced selectivity. Vacuum 71, 391 (2003).Google Scholar
4.Truica-Marasescu, F. and Wertheimer, M.R.: Vacuum-ultraviolet photopolymerization of amine rich thin films. Macromol. Chem. Phys. 209, 1043 (2008). Erratum; Macromol. Chem. Phys. 209, 2061 (2008).Google Scholar
5.Truica-Marasescu, F., Ruiz, J.C., and Wertheimer, M.R.: Vacuum-ultraviolet (VUV) photopolymerization of amine-rich thin films from ammonia-hydrocarbon Gas Mixtures. Plasma Process. Polym. 9, 473 (2012).Google Scholar
6.Girard-Lauriault, P-L., Mwale, F., Iordanova, C., Demers, C., Desjardins, P., and Wertheimer, M.R.: Atmospheric pressure deposition of micropatterned nitrogen-rich plasma-polymer films for tissue engineering. Plasma Process. Polym. 2, 263 (2005).Google Scholar
7.Ruiz, J.C., St-Georges-Robillard, A., Theresy, C., Lerouge, S., and Wertheimer, M.R.: Fabrication and characterization of amine-rich organic thin films: focus on stability. Plasma Process. Polym. 7, 737 (2010).Google Scholar
8.Hamerli, P., Weigel, Th., Groth, Th., and Paul, D.: Surface properties and cell adhesion onto allylamine-plasma-coated polyethylenterephthalate membranes. Biomaterials 24, 3989 (2003).Google Scholar
9.Qing, Ch and Wenbin, S.: Method for efficiently producing paper using polyester fibers. Faming Zhuanli Shenqing, CN 107653734 A 20180202 (2018).Google Scholar
10.Bullet, N.A., Truica-Marasescu, F-E., Lerouge, S., Mwale, F., and Wertheimer, M.R.: Polymer surface micropattering by plasma and VUV-photochemical modification for controlled cell culture. Appl. Surf. Sci. 235, 395 (2004).Google Scholar
11.Shanmugharaj, A.M., Kim, J.K., and Ryu, S.H.: Modification of rubber surface by UV surface grafting. Appl. Surf. Sci. 252, 5714 (2005).Google Scholar
12.Qi, A., Yihe, Z., Tao, H., and Xinglong, L.: Method for preparing multilayer film by layer by layer self-assembly, which can separately regulate flow of small molecule drugs. Faming Zhuanli Shenqing, CN 107648206 A 20180202 (2018).Google Scholar
13.Panarin, E.F., Gorshkov, N.I., Krasikov, V.D., Nazarova, O.V., Murko, A.Y., and Zolotova, Y.I.: Method of obtaining water-soluble polymer complexes of radioisotopes based on chloroacetic acidfunctionalized N-vinylpyrridone-N-allylamine copolymer by AIBN initiator. Russ. RU 2570114 C1 20151210 (2015). Language: Russian.Google Scholar
14.Iman, K., Amir, H., Elham, M., and Homayon, A.: Removal of hexavalent chromium in industrial wastewater using poly[allylamine-(N,N-dimethylacrylamide)] grafted onto magnetic nanoparticles. Adv. Polym. Technol. 36, 371 (2017).Google Scholar
15.Yang, Y., Li, H., Chen, S., Zhao, Y., and Li, Q.: Preparation and characterization of a solid amine adsorbent for capturing CO2 by grafting allylamine onto PAN fiber. Langmuir 26, 13897 (2010).Google Scholar
16.Hayashi, S.: Patent US4626577, Process for preparing a solution of poly(allylamine), http://www.gogle.com. Patents.Google Scholar
Supplementary material: File

Pérez-Calixto et al. supplementary material

Figure S1

Download Pérez-Calixto et al. supplementary material(File)
File 337.8 KB