Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-30T07:45:56.691Z Has data issue: false hasContentIssue false

3D printing of polyvinylidene fluoride/photopolymer resin blends for piezoelectric pressure sensing application using the stereolithography technique

Published online by Cambridge University Press:  30 August 2019

Hoejin Kim*
Affiliation:
Department of Mechanical Engineering, University of Texas at El Paso, El Paso, TX 79968, USA
Luis Carlos Delfin Manriquez
Affiliation:
Department of Mechanical Engineering, University of Texas at El Paso, El Paso, TX 79968, USA
Md Tariqul Islam
Affiliation:
Department of Chemistry, University of Texas at El Paso, El Paso, TX 79968, USA
Luis A. Chavez
Affiliation:
Department of Mechanical Engineering, University of Texas at El Paso, El Paso, TX 79968, USA
Jaime E. Regis
Affiliation:
Department of Mechanical Engineering, University of Texas at El Paso, El Paso, TX 79968, USA
Md Ariful Ahsan
Affiliation:
Department of Chemistry, University of Texas at El Paso, El Paso, TX 79968, USA
Juan C. Noveron
Affiliation:
Department of Chemistry, University of Texas at El Paso, El Paso, TX 79968, USA
Tzu-Liang B. Tseng
Affiliation:
Department of Industrial, Manufacturing, and Systems Engineering, University of Texas at El Paso, El Paso, TX 79968, USA
Yirong Lin
Affiliation:
Department of Mechanical Engineering, University of Texas at El Paso, El Paso, TX 79968, USA
*
Address all correspondence to Hoejin Kim at [email protected]
Get access

Abstract

A simple and facile stereolithography 3D printing technique was utilized to fabricate piezoelectric photopolymer-based polyvinylidene fluoride (PVDF) blends. Different process variables, such as solvent (N,N-dimethylformamide, DMF) to PVDF ratio and PVDF solution to photopolymer resin (PR) ratio, were engineered to enhance the dispersion of the PVDF into the PR so as to achieve the maximum piezoelectric coupling coefficient. Our results demonstrate that a ratio of 1:10 (PVDF:DMF) and 2 wt%-PVDF/PR was optimal for the best dissolution of the PVDF, 3D printability, and piezoelectric properties. Under these conditions, the blend generated ±0.121 nA under 80 N dynamic loading excitation. We believe that the findings of this work would promote many further studies on the mass production of flexible piezoelectric polymer blends with higher quality finished surface and design flexibility.

Type
Research Letters
Copyright
Copyright © The Author(s) 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Kawai, H.: The piezoelectricity of poly (vinylidene fluoride). Jpn J. Appl. Phys. 8, 975 (1969).Google Scholar
2.Lovinger, A.J.: Poly (Vinylidene Fluoride). Developments in Crystalline Polymers—1 (Applied Science Publisher, London, UK, 1982), pp. 195273.10.1007/978-94-009-7343-5_5Google Scholar
3.Fukada, E.: History and recent progress in piezoelectric polymers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 12771290 (2000).10.1109/58.883516Google Scholar
4.Ye, Y., Jiang, Y., Wu, Z., and Zeng, H.: Phase transitions of poly (vinylidene fluoride) under electric fields. Integr. Ferroelectr. 80, 245251 (2006).10.1080/10584580600659423Google Scholar
5.Sajkiewicz, P., Wasiak, A., and Gocłowski, Z.: Phase transitions during stretching of poly (vinylidene fluoride). Eur. Polym. J. 35, 423429 (1999).Google Scholar
6.Salimi, A. and Yousefi, A.: Analysis method: FTIR studies of β-phase crystal formation in stretched PVDF films. Polym. Test. 22, 699704 (2003).Google Scholar
7.Kim, H., Torres, F., Villagran, D., Stewart, C., Lin, Y., and Tseng, T.-L.B.: 3D printing of BaTiO3/PVDF composites with electric in situ poling for pressure sensor applications. Macromol. Mater. Eng. 302, 1700229 (2017).10.1002/mame.201700229Google Scholar
8.Granstrom, J., Feenstra, J., Sodano, H.A., and Farinholt, K.: Energy harvesting from a backpack instrumented with piezoelectric shoulder straps. Smart Mater. Struct. 16, 1810 (2007).10.1088/0964-1726/16/5/036Google Scholar
9.Chiolerio, A., Lombardi, M., Guerriero, A., Canavese, G., Stassi, S., Gazia, R., et al. .: Effect of the fabrication method on the functional properties of BaTiO3: PVDF nanocomposites. J. Mater. Sci. 48, 69436951 (2013).Google Scholar
10.Kim, H., Fernando, T., Li, M., Lin, Y., and Tseng, T.-L.B.: Fabrication and characterization of 3D printed BaTiO3/PVDF nanocomposites. J. Compos. Mater 52(2), 197206 (2017). 10.1177/0021998317704709.Google Scholar
11.Kaura, T., Nath, R., and Perlman, M.: Simultaneous stretching and corona poling of PVDF films. J. Phys. D Appl. Phys. 24, 1848 (1991).10.1088/0022-3727/24/10/020Google Scholar
12.Sun, D., Chang, C., Li, S., and Lin, L.: Near-field electrospinning. Nano Lett. 6, 839842 (2006).Google Scholar
13.Kim, H., Torres, F., Islam, M.T., Islam, M.D., Chavez, L.A., Garcia Rosales, C.A., et al. : Increased piezoelectric response in functional nanocomposites through multiwall carbon nanotube interface and fused-deposition modeling three-dimensional printing. MRS Commun., 17 (2017).Google Scholar
14.Kim, H., Fernando, T., Li, M., Lin, Y., and Tseng, T.-L.B.: Fabrication and characterization of 3D printed BaTiO3/PVDF nanocomposites. J. Compos. Mater. 52, 197206 (2018).Google Scholar
15.Kim, K., Zhu, W., Qu, X., Aaronson, C., McCall, W.R., Chen, S., et al. : 3D optical printing of piezoelectric nanoparticle–polymer composite materials. ACS Nano 8, 97999806 (2014).Google Scholar
16.Kim, H., Torres, F., Wu, Y., Villagran, D., Lin, Y., and Tseng, T.-L.B.: Integrated 3D printing and corona poling process of PVDF piezoelectric films for pressure sensor application. Smart Mater. Struct. 26, 085027 (2017).Google Scholar
17.Kim, H., Johnson, J., Chavez, L.A., Rosales, C.A.G., Tseng, T.-L.B., and Lin, Y.: Enhanced dielectric properties of three phase dielectric MWCNTs/BaTiO3/PVDF nanocomposites for energy storage using fused deposition modeling 3D printing. Ceram. Int. 44, 90379044 (2018).Google Scholar
18.Bodkhe, S., Turcot, G., Gosselin, F.P., and Therriault, D.: One-step solvent evaporation-assisted 3D printing of piezoelectric PVDF nanocomposite structures. ACS Appl. Mater. Interface. 9, 2083320842 (2017).Google Scholar
19.Vaezi, M., Chianrabutra, S., Mellor, B., and Yang, S.: Multiple material additive manufacturing–Part 1: a review: this review paper covers a decade of research on multiple material additive manufacturing technologies which can produce complex geometry parts with different materials. Virt. Phys. Prototyping 8, 1950 (2013).Google Scholar
20.Song, X.: Slurry Based Stereolithography: A Solid Freeform Fabrication Method of Ceramics and Composites (University of Southern California Libraries, University of Southern California, 2016).Google Scholar
21.Stansbury, J.W. and Idacavage, M.J.: 3D printing with polymers: challenges among expanding options and opportunities. Dent. Mater. 32, 5464 (2016).10.1016/j.dental.2015.09.018Google Scholar
22.Dizon, J.R.C., Espera, A.H. Jr, Chen, Q., and Advincula, R.C.: Mechanical characterization of 3D-printed polymers. Addit. Manuf. 20, 4467 (2018).Google Scholar
23.Hull, C.W.. Apparatus for production of three-dimensional objects by stereolithography. Google Patents, 1986.Google Scholar
24.Zarek, M., Layani, M., Cooperstein, I., Sachyani, E., Cohn, D., and Magdassi, S.: 3D printing of shape memory polymers for flexible electronic devices. Adv. Mater. 28, 44494454 (2016).Google Scholar
25.Polyvinylidene fluoride: Wikipedia: https://en.wikipedia.org/wiki/Polyvinylidene_fluoride (cited 1 December 2019).Google Scholar
26.Liu, F., Hashim, N.A., Liu, Y., Abed, M.M., and Li, K.: Progress in the production and modification of PVDF membranes. J. Membr. Sci. 375, 127 (2011).Google Scholar
27.Kim, H., Shuvo, M.A.I., Karim, H., Noveron, J.C., Tseng, T.-l, and Lin, Y.: Synthesis and characterization of CeO2 nanoparticles on porous carbon for Li-ion battery. MRS Adv. 2, 32993307 (2017).Google Scholar
28.Kim, H., Shuvo, M.A.I., Karim, H., Nandasiri, M.I., Schwarz, A.M., Vijayakumar, M., et al. : Porous carbon/CeO2 nanoparticles hybrid material for high-capacity super-capacitors. MRS Adv. 2, 24712480 (2017).Google Scholar
29.Žagar, E. and Žigon, M.: Solution properties of carboxylated polyurethanes and related ionomers in polar solvents (DMF and LiBr/DMF). Polymer 41, 35133521 (2000).Google Scholar
30.Cai, Y. and Jessop, J.L.: Photopolymerization, Free Radical. (Encyclopedia of Polymer Science and Technology, 2004).Google Scholar
31.Inceoglu, S., Olugebefola, S.C., Acar, M.H., and Mayes, A.M.: Atom transfer radical polymerization using poly (vinylidene fluoride) as macroinitiator. Des. Monomers Polym. 7, 181189 (2004).Google Scholar
32.Zhang, D. and Yang, X.: Precipitation polymerization. In Encyclopedia of Polymeric Nanomaterials, edited by Kobayashi, S., and Müllen, K.. (Springer, Berlin/Heidelberg, 2021) pp. 110.Google Scholar
33.Wang, D., Li, K., and Teo, W.: Porous PVDF asymmetric hollow fiber membranes prepared with the use of small molecular additives. J. Membr. Sci. 178, 1323 (2000).Google Scholar
34.Cai, X., Lei, T., Sun, D., and Lin, L.: A critical analysis of the α, β and γ phases in poly (vinylidene fluoride) using FTIR. RSC Adv. 7, 1538215389 (2017).10.1039/C7RA01267EGoogle Scholar
35.Mandal, D., Henkel, K., and Schmeißer, D.: The electroactive β-phase formation in Poly (vinylidene fluoride) by gold nanoparticles doping. Mater. Lett. 73, 123125 (2012).10.1016/j.matlet.2011.11.117Google Scholar
36.Ince-Gunduz, B.S., Alpern, R., Amare, D., Crawford, J., Dolan, B., Jones, S., et al. : Impact of nanosilicates on poly (vinylidene fluoride) crystal polymorphism: Part 1. Melt-crystallization at high supercooling. Polymer 51, 14851493 (2010).10.1016/j.polymer.2010.01.011Google Scholar
37.Ishtiaque Shuvo, M.A., Rodriguez, G., Islam, M.T., Karim, H., Ramabadran, N., Noveron, J.C., et al. : Microwave exfoliated graphene oxide/TiO2 nanowire hybrid for high performance lithium ion battery. J. Appl. Phys. 118, 125102 (2015).10.1063/1.4931380Google Scholar
38.Islam, M.T., Hernandez, C., Ahsan, M.A., Pardo, A., Wang, H., and Noveron, J.C.: Sulfonated resorcinol-formaldehyde microspheres as high-capacity regenerable adsorbent for the removal of organic dyes from water. J. Environ. Chem. Eng. 5, 52705279 (2017).10.1016/j.jece.2017.10.003Google Scholar
39.Pal, S., Islam, M.T., Moore, J.T., Reyes, J., Pardo, A., Varela-Ramirez, A., et al. : Self-assembly of a novel Cu(II) coordination complex forms metallo-vesicles that are able to transfect mammalian cells. New J. Chem. 41, 1123011237 (2017).10.1039/C7NJ02161EGoogle Scholar
40.Biswas, M., Libera, J.A., Darling, S.B., and Elam, J.W.: Kinetics for the sequential infiltration synthesis of alumina in poly (methyl methacrylate): an infrared spectroscopic study. J. Phy. Chem. C 119, 1458514592 (2015).Google Scholar
41.Duan, G., Zhang, C., Li, A., Yang, X., Lu, L., and Wang, X.: Preparation and characterization of mesoporous zirconia made by using a poly (methyl methacrylate) template. Nanoscale Res. Lett. 3, 118 (2008).10.1007/s11671-008-9123-7Google Scholar
42.Bai, H., Wang, X., Zhou, Y., and Zhang, L.: Preparation and characterization of poly (vinylidene fluoride) composite membranes blended with nano-crystalline cellulose. Prog. Nat. Sci. Mater. Int. 22, 250257 (2012).10.1016/j.pnsc.2012.04.011Google Scholar
43.Vinogradov, A. and Holloway, F.: Electro-mechanical properties of the piezoelectric polymer PVDF. Ferroelectrics 226, 169181 (1999).Google Scholar
Supplementary material: File

Kim et al. supplementary material

Figures S1-S4

Download Kim et al. supplementary material(File)
File 3 MB