Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-30T18:47:18.221Z Has data issue: false hasContentIssue false

Voltage-controlled magnetoelectric memory and logic devices

Published online by Cambridge University Press:  10 December 2018

Xiang Li
Affiliation:
Materials Science and Engineering Department, Stanford University, Stanford, USA; [email protected]
Albert Lee
Affiliation:
Electrical and Computer Engineering Department, University of California, Los Angeles, USA; [email protected]
Seyed Armin Razavi
Affiliation:
Electrical and Computer Engineering Department, University of California, Los Angeles, USA; [email protected]
Hao Wu
Affiliation:
Electrical and Computer Engineering Department, University of California, Los Angeles, USA; [email protected]
Kang L. Wang
Affiliation:
Departments of Physics, Electrical and Computer Engineering, and Materials Science and Engineering, University of California, Los Angeles, USA; [email protected]
Get access

Abstract

Harnessing the nonvolatility of magnetism and the power of electric control, magnetoelectric devices that control magnetism electrically promise to deliver next-generation electronics systems that can store and compute large amounts of information with minimal power consumption and ultrafast processing speed. We highlight progress in magnetoelectric memory and logic prototypes using the voltage-controlled magnetic anisotropy (VCMA) effect. First, important performance metrics of VCMA-based magnetoelectric random access memory (MeRAM) are benchmarked against embedded complementary metal oxide semiconductor and other emerging embedded nonvolatile memories. We then discuss scaling of MeRAM from the physics and materials perspectives of the VCMA effect, as well as the use of magnetoelectric logic devices and circuits to realize new computing paradigms with VCMA. Finally, challenges to realize the full potential of VCMA-based memory and logic are presented: VCMA coefficient of 1000 fJ/V-m for energy-efficient write with low errors and tunneling magnetoresistance of 1000% for high density and low noise margin readout. New approaches for deterministic switching based on VCMA are needed. We share perspectives to address these challenges using new materials and device operation schemes.

Type
Technical Feature
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This technical feature article is related to the theme of the November 2018 MRS Bulletin issue on “Materials for strain-mediated magnetoelectric systems.”

References

Wulf, W.A., McKee, S.A., SIGARCH Comput. Archit. News 23 (1), 20 (1995).CrossRefGoogle Scholar
Fujita, S., Noguchi, H., Ikegami, K., Takeda, S., Nomura, K., Abe, K., “Novel Memory Hierarchy with e-STT-MRAM for Near-Future Applications,” presented at the 2017 International Symposium on VLSI Design, Automation and Test (VLSI-DAT), Hsinchu, Taiwan, April 24–27, 2017, pp. 1–2, doi:10.1109/VLSI-DAT.2017.7939700.CrossRefGoogle Scholar
Zidan, M.A., Strachan, J.P., Lu, W.D., Nat. Electron. 1 (1), 22 (2018).CrossRefGoogle Scholar
Slonczewski, J.C., J. Magn. Magn. Mater. 159 (1), L1 (1996).CrossRefGoogle Scholar
Sun, J.Z., J. Magn. Magn. Mater. 202 (1), 157 (1999).CrossRefGoogle Scholar
Miron, I.M., Gaudin, G., Auffret, S., Rodmacq, B., Schuhl, A., Pizzini, S., Vogel, J., Gambardella, P., Nat. Mater. 9 (3), 230 (2010).CrossRefGoogle Scholar
Liu, L., Lee, O.J., Gudmundsen, T.J., Ralph, D.C., Buhrman, R.A., Phys. Rev. Lett. 109 (9), 096602 (2012).Google Scholar
Wang, K.L., Amiri, P.K., SPIN 02 (03), 1240002 (2012).Google Scholar
Wang, W.G., Li, M., Hageman, S., Chien, C.L., Nat. Mater. 11 (1), 64 (2012).CrossRefGoogle Scholar
Maruyama, T., Shiota, Y., Nozaki, T., Ohta, K., Toda, N., Mizuguchi, M., Tulapurkar, A.A., Shinjo, T., Shiraishi, M., Mizukami, S., Ando, Y., Suzuki, Y., Nat. Nanotechnol. 4 (3), 158 (2009).CrossRefGoogle Scholar
Li, X., PhD thesis, “Interface Engineering of Voltage-Controlled Embedded Magnetic Random Access Memory,” University of California, Los Angeles (2018), https://escholarship.org/uc/item/2t0089x7.Google Scholar
Oboril, F., Bishnoi, R., Ebrahimi, M., Tahoori, M.B., IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 34 (3), 367 (2015).CrossRefGoogle Scholar
Wang, K.L., Alzate, J.G., Khalili Amiri, P., J. Phys. D Appl. Phys. 46, 074003 (2013).Google Scholar
Suzuki, K., Swanson, S., A Survey of Trends in Non-Volatile Memory Technologies: 2000–2014, presented at the 2015 IEEE Int. Mem. Workshop (IMW), Monterey, CA, 2015, pp. 1–4, doi:10.1109/IMW.2015.7150274.Google Scholar
Lee, H., Lee, A., Ebrahimi, F., Amiri, P.K., Wang, K.L., IEEE Magn. Lett. 8, 1 (2017).Google Scholar
Duan, C.-G., Velev, J., Sabirianov, R., Zhu, Z., Chu, J., Jaswal, S., Tsymbal, E., Phys. Rev. Lett. 101 (13), 137201 (2008).CrossRefGoogle Scholar
Nakamura, K., Shimabukuro, R., Fujiwara, Y., Akiyama, T., Ito, T., Freeman, A.J., Phys. Rev. Lett. 102 (18) (2009).Google Scholar
Chien, D., Li, X., Wong, K., Zurbuchen, M.A., Robbennolt, S., Yu, G., Tolbert, S., Kioussis, N., Amiri, P.K., Wang, K.L., Chang, J.P., Appl. Phys. Lett. 108 (11), 112402 (2016).CrossRefGoogle Scholar
Li, X., Fitzell, K., Wu, D., Ty Karaba, C., Buditama, A., Yu, G., Wong, K.L., Altieri, N., Grezes, C., Kioussis, N., Tolbert, S., Zhang, Z., Chang, J.P., Amiri, P.K., Wang, K.L., Appl. Phys. Lett. 110 (5), 052401 (2017).CrossRefGoogle Scholar
Kato, Y., Yoda, H., Saito, Y., Oikawa, S., Fujii, K., Yoshiki, M., Koi, K., Sugiyama, H., Ishikawa, M., Inokuchi, T., Shimomura, N., Shimizu, M., Shirotori, S., Altansargai, B., Ohsawa, Y., Ikegami, K., Tiwari, A., Kurobe, A., Appl. Phys. Express 11 (5), 053007 (2018).CrossRefGoogle Scholar
Nozaki, T., Kozioł-Rachwał, A., Skowroński, W., Zayets, V., Shiota, Y., Tamaru, S., Kubota, H., Fukushima, A., Yuasa, S., Suzuki, Y., Phys. Rev. Appl. 5 (4), 044006 (2016).CrossRefGoogle Scholar
Alzate, J.G., PhD thesis, “Voltage-Controlled Magnetic Dynamics in Nanoscale Magnetic Tunnel Junctions,” University of California, Los Angeles (2014), https://escholarship.org/uc/item/6wm7x0rf.Google Scholar
Grezes, C., Ebrahimi, F., Alzate, J.G., Cai, X., Katine, J.A., Langer, J., Ocker, B., Khalili Amiri, P., Wang, K.L., Appl. Phys. Lett. 108 (1), 012403 (2016).CrossRefGoogle Scholar
Kanai, S., Matsukura, F., Ohno, H., Appl. Phys. Lett. 108 (19), 192406 (2016).CrossRefGoogle Scholar
Lee, H., PhD thesis, “Integration of Voltage-Controlled Spintronic Devices in CMOS Circuits,” University of California, Los Angeles (2017), https://escholarship.org/uc/item/0cx596qk.Google Scholar
Lee, H., Ebrahimi, F., Amiri, P.K., Wang, K.L., IEEE Magn. Lett. 7, 1 (2016).Google Scholar
Lee, H., Lee, A., Ebrahimi, F., Amiri, P.K., Wang, K.L., IEEE Electron Device Lett. 38 (9), 1343 (2017).CrossRefGoogle Scholar
Wang, S.D., Pal, S., Li, T.M., Pan, A., Grezes, C., Khalili-Amiri, P., Wang, K L., Gupta, P., presented at the Design, Automation & Test in Europe Conference, Lausanne, Switzerland, March 27–31, 2017, p.1438.Google Scholar
Zhang, H., Kang, W., Wang, L.Z., Wang, K.L., Zhao, W.S., IEEE Trans. Electron Devices 64 (10), 4295 (2017).CrossRefGoogle Scholar
Baek, S.C., Park, K.-W., Kil, D.-S., Jang, Y., Park, J., Lee, K.-J., Park, B.-G., Nat. Electron. 1 (7), 398 (2018).CrossRefGoogle Scholar
Chung, S.W., Kishi, T., Park, J.W., Yoshikawa, M., Park, K.S., Nagase, T., Sunouchi, K., Kanaya, H., Kim, G.C., Noma, K., Lee, M.S., Yamamoto, A., Rho, K.M., Tsuchida, K., Chung, S.J., Yi, J.Y., Kim, H.S., Chun, Y.S., Oyamatsu, H., Hong, S.J., “4Gbit Density STT-MRAM Using Perpendicular MTJ Realized with Compact Cell Structure,” presented at the 2016 IEEE International Electron Devices Meeting (IEDM), San Francisco, 2016, pp. 27.1.1–27.1.4, doi: 10.1109/IEDM.2016.7838490.CrossRefGoogle Scholar
Nozaki, T., Koziol-Rachwal, A., Tsujikawa, M., Shiota, Y., Xu, X.D., Ohkubo, T., Tsukahara, T., Miwa, S., Suzuki, M., Tamaru, S., Kubota, H., Fukushima, A., Hono, K., Shirai, M., Suzuki, Y., Yuasa, S., NPG Asia Mater . 9 (2017).CrossRefGoogle Scholar
Li, X., Yu, G., Wu, H., Ong, P.V., Wong, K., Hu, Q., Ebrahimi, F., Upadhyaya, P., Akyol, M., Kioussis, N., Han, X., Amiri, P.K., Wang, K.L., Appl. Phys. Lett. 107 (14), 142403 (2015).CrossRefGoogle Scholar
Skowroński, W., Nozaki, T., Lam, D.D., Shiota, Y., Yakushiji, K., Kubota, H., Fukushima, A., Yuasa, S., Suzuki, Y., Phys. Rev. B 91 (18), 184410 (2015).CrossRefGoogle Scholar
Huai, Y., Gan, H., Wang, Z., Xu, P., Hao, X., Yen, B.K., Malmhall, R., Pakala, N., Wang, C., Zhang, J., Zhou, Y., Jung, D., Satoh, K., Wang, R., Xue, L., Pakala, M., Appl. Phys. Lett. 112 (9), 092402 (2018).CrossRefGoogle Scholar
Wang, M., Cai, W., Cao, K., Zhou, J., Wrona, J., Peng, S., Yang, H., Wei, J., Kang, W., Zhang, Y., Langer, J., Ocker, B., Fert, A., Zhao, W., Nat. Commun. 9 (1), 671 (2018).CrossRefGoogle Scholar
Ikeda, S., Hayakawa, J., Ashizawa, Y., Lee, Y.M., Miura, K., Hasegawa, H., Tsunoda, M., Matsukura, F., Ohno, H., Appl. Phys. Lett. 93 (8), 082508 (2008).CrossRefGoogle Scholar
Watanabe, K., Jinnai, B., Fukami, S., Sato, H., Ohno, H., Nat. Commun. 9 (1), 663 (2018).CrossRefGoogle Scholar
Zhang, Y., Li, Y., Sun, Z., Li, H., Chen, Y., Jones, A.K., IEEE Trans. Very Large Scale Integr. VLSI Syst. 23 (6), 1170 (2015).CrossRefGoogle Scholar
Lee, H., Grèzes, C., Wang, S., Ebrahimi, F., Gupta, P., Amiri, P.K., Wang, K.L., IEEE Magn. Lett. 7, 1 (2016).Google Scholar
Liu, H., Kawami, T., Moges, K., Uemura, T., Yamamoto, M., Shi, F., Voyles, P.M., J. Phys. D Appl. Phys. 48 (16), 164001 (2015).CrossRefGoogle Scholar
Song, T., Cai, X., Tu, M.W., Zhang, X., Huang, B., Wilson, N.P., Seyler, K.L., Zhu, L., Taniguchi, T., Watanabe, K., McGuire, M.A., Cobden, D.H., Xiao, D., Yao, W., Xu, X., Science 360, 1214 (2018).CrossRefGoogle Scholar
Grezes, C., Lee, H., Lee, A., Wang, S., Ebrahimi, F., Li, X., Wong, K., Katine, J.A., Ocker, B., Langer, J., Gupta, P., Amiri, P.K., Wang, K.L., IEEE Magn. Lett. 8, 1 (2017).CrossRefGoogle Scholar
Lee, H., Lee, A., Wang, S.D., Ebrahimi, F., Gupta, P., Amiri, P.K., Wang, K.L., IEEE Trans. Very Large Scale Integr. VLSI Syst. 25 (7), 2027 (2017).CrossRefGoogle Scholar
Shiota, Y., Nozaki, T., Tamaru, S., Yakushiji, K., Kubota, H., Fukushima, A., Yuasa, S., Suzuki, Y., Appl. Phys. Lett. 111 (2) (2017).CrossRefGoogle Scholar
Kanai, S., Nakatani, Y., Yamanouchi, M., Ikeda, S., Sato, H., Matsukura, F., Ohno, H., Appl. Phys. Lett. 104 (21), 212406 (2014).CrossRefGoogle Scholar
Fukami, S., Zhang, C., DuttaGupta, S., Kurenkov, A., Ohno, H., Nat. Mater. 15 (5), 535 (2016).CrossRefGoogle Scholar
Yu, G., Upadhyaya, P., Fan, Y., Alzate, J.G., Jiang, W., Wong, K.L., Takei, S., Bender, S.A., Chang, L.T., Jiang, Y., Lang, M., Tang, J., Wang, Y., Tserkovnyak, Y., Amiri, P.K., Wang, K.L., Nat. Nanotechnol. 9 (7), 548 (2014).CrossRefGoogle Scholar
Yoda, H., Shimomura, N., Ohsawa, Y., Shirotori, S., Kato, Y., Inokuchi, T., Kamiguchi, Y., Altansargai, B., Saito, Y., Koi, K., Sugiyama, H., Oikawa, S., Shimizu, M., Ishikawa, M., Ikegami, K., Kurobe, A., “Voltage-Control Spintronics Memory (VoCSM) Having Potentials of Ultra-Low Energy-Consumption and High-Density,” presented at the IEEE International Electron Devices Meeting (IEDM), San Francisco, 2016, pp. 27.6.1–27.6.4, doi:10.1109/IEDM.2016.7838495.CrossRefGoogle Scholar
Bhattacharya, D., Atulasimha, J., ACS Appl. Mater. Interfaces 10 (20), 17455 (2018).CrossRefGoogle Scholar