Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-07-05T05:30:18.309Z Has data issue: false hasContentIssue false

Lithium and trace-element concentrations in trioctahedral micas from granites of different geochemical types measured via laser ablation ICP-MS

Published online by Cambridge University Press:  02 January 2018

Karel Breiter*
Affiliation:
Institute of Geology of the Czech Academy of Science, Rozvojová 269, Praha 5 CZ-165 00, Czech Republic
Michaela Vaňková
Affiliation:
Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 2, Brno CZ-611 37, Czech Republic
Michaela Vašinová Galiová
Affiliation:
Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 2, Brno CZ-611 37, Czech Republic Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Brno CZ-625 00, Czech Republic
Zuzana Korbelová
Affiliation:
Institute of Geology of the Czech Academy of Science, Rozvojová 269, Praha 5 CZ-165 00, Czech Republic
Viktor Kanický
Affiliation:
Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 2, Brno CZ-611 37, Czech Republic Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Brno CZ-625 00, Czech Republic
*

Abstract

The compositions of trioctahedral micas from 51 samples of granitoids with different geochemical affiliations and grades of differentiation from the Bohemian Massif, Central Europe, were analysed using electron microprobe (major elements) and laser ablation inductively coupled plasma mass spectrometry (Li, Sc, Ga, Ge, Nb, In, Sn, Cs, Ta, W, Tl). The micas form a continuous evolutionary series from phlogopite to zinnwaldite. The phlogopites and biotites from the I-type rocks are characterized by 5.5–5.7 Si, 2.4–2.6 Al, <0.1 Li atoms per formula unit [apfu] and Mg/(Mg + Fe) = 0.4–0.8. The biotites from the S-type granites usually contain 5.3–5.7 Si, 3.2–3.6 Al, 0.1–0.3 Li apfu and Mg/(Mg + Fe) = 0.15–0.4. The annites and zinnwaldites from the rare-metal granites contain 5.7–6.8 Si, 3.2–3.8 Al, 0.6–2.6 Li apfu and Mg/(Mg + Fe) < 0.1. The concentrations of F, Rb, Cs and Tl increase from the phlogopites and biotites to zinnwaldites: F 0.1 → 8 wt.%, Rb2O 0.05 → 1.7 wt.%, Tl 2 → 50 ppm and Cs 40 → 2000 ppm. The concentrations of Sn, Nb, Ta and W in phlogopites and biotites from the I- and S-type granitoids generally correlate with those of the parent rocks and reach values of (in ppm) 20–100 Sn, 20–250 Nb, 1–20 Ta and <5 W. The highest concentrations were found in the Li-annites in the relatively early facies of rare-metal granites (in ppm): 250–600 Sn, 400–600 Nb, 60–120 Ta and 50– 120 W. The zinnwaldites in the late rare-metal granites facies are impoverished in these elements, which is explained by contemporaneous crystallization of cassiterite and columbite. Lithium enters the crystal lattice of trioctahedral micas via the exchange vector Li3□Si3Fe–6Al–1 up to concentrations of ∼2.5 wt.% Li2O (1.5 apfu Li). At higher Li concentrations, Li is incorporated through the exchange vector Li3Si1–1 Fe–2Al–1.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bailey, S.W. (editor) (1984) Micas. Reviews in Mineralogy, 13. Mineralogical Society of America, Washington, DC, 584 pp.Google Scholar
Bea, F., Pereira, M.D. and Stroh, A. (1994) Mineral/ leucosome partitioning in a peraluminous migmatite (a laser ablation-ICP-MS study). Chemical Geology, 117, 291312.CrossRefGoogle Scholar
Breiter, K. (2002) From explosive breccia to unidirec-tional solidification textures: magmatic evolution of a phosphorus- and fluorine-rich granite systém (Podlesí, Krušné hory Mts., Czech Republic). Bulletin of the Czech Geological Survey, 77, 6792.Google Scholar
Breiter, K. (2012) Nearly contemporaneous evolution of the A- and S-type fractionated granites in the Krušné hory/Erzgebirge Mts., Central Europe. Lithos, 151, 105121.CrossRefGoogle Scholar
Breiter, K. and Koller, F. (1999) Two-mica granites in the central part of the South Bohemian Pluton. Abhandlungen der Geologischen Bundesanstalt, 56, 201212.Google Scholar
Breiter, K. and Koller, F. (2009) Mafic K- and Mg-rich magmatic rocks from Western Mühlviertel (Austria) area and the adjacent part of the Šumava Mountains (Czech Republic). Jahrbuch der Geologischen Bundesanstalt, 149, 477485.Google Scholar
Breiter, K., Förster, H.-J. and Seltmann, R. (1999) Variscan silicic magmatism and related tin-tungsten mineralization in the Erzgebirge-Slavkovský les metallogenic province. Mineralium Deposita, 34, 505521.CrossRefGoogle Scholar
Breiter, K., Müller, A., Leichmann, J. and Gabašová, A. (2005) Textural and chemical evolution of a fractionated granitic system: the Podlesí stock, Czech Republic. Lithos, 80, 323345.CrossRefGoogle Scholar
Breiter, K., Koller, F., Scharbert, S., Siebel, W., Škoda, R. and Frank, W (2007) Two-mica granites of the Plechý (Plockenstein) pluton in the Triple-point area of Austria, the Czech Republic and Germany. Jahrbuch der Geologischen Bundesanstalt, 147, 527544.Google Scholar
Breiter, K., Vašinová Galiová, M., Korbelová, Z., Vaňková, M. and Kanický, V. (2015) Abundances of gallium, indium, and thalium in granitoids and their rock-forming minerals: Case study of Bohemian Massif. Geoscience Research Reports for 2014, 48, 7984.Google Scholar
Brigatti, M.F., Lugli, C., Poppi, L., Ford, E.E. and Kile, D.E. (2000) Crystal chemical variations in Li- and Fe-rich micas from Pikes Peak batholith (central Colorado). American Mineralogist, 85, 12751286.CrossRefGoogle Scholar
Brigatti, M.F., Kile, D.E. and Poppi, L. (2003) Crystal structure and chemistry of lithium-bearing trioctahedral micas-3T. European Journal of Mineralogy, 15, 349355.CrossRefGoogle Scholar
Černý, P. and Burt, D. (1984) Paragenesis, crystal-lochemical characteristics, and geochemical evolution of micas in granite pegmatites. Pp. 257297 in: Mica (S.W. Bailey, editor). Reviews in Mineralogy, 13. Mineralogical Society of America, Washington, DC.CrossRefGoogle Scholar
Černý, P., Stanek, J., Novák, M., Baadsgaard, H., Rieder, M., Ottolini, L., Kovalová, M. and Chapmann, R. (1995) Geochemical and structural evolution of micas in the Rožná and Dobrá Voda pegmatites, Czech Republic. Mineralogy and Petrology, 55, 177201.CrossRefGoogle Scholar
Černý, P., Chapman, R., Teerstra, D.K. and Novák, M. (2003) Rubidium- and cesium-dominant micas in granitic pegmatites. American Mineralogist, 88, 18321835.CrossRefGoogle Scholar
Cháb, J., Breiter, K., Fatka, O., Hladil, J., Kalvoda, J., Šimůnek, Z., Štorch, P., Vašíček, Z., Zajic, I andZapletal, X (2010) Outline of the Geology of the Bohemian Massif. Czech Geological Survey, Prague, 295 pp.Google Scholar
Charoy, B., Chaussidon, M. and Noronha, F (1995) Lithium zonation in white micas from the Argemela microgranite (central Portugal): an in-sitution-, electron-microprobe and spectroscopic investigation. European Journal of Mineralogy, 7, 335352.CrossRefGoogle Scholar
Colombo, F., Lira, R. and Dorais, M.J. (2010) Mineralogy and crystal chemistry of micas from the A-type El Portezuelo granite and related pegmatites, Catamarca (NW Argentina). Journal of Geosciences, 55, 4356.Google Scholar
du Bray, E.A. (1994) Compositions of micas in peraluminous granitoids of the eastern Arabian Shield Contribution to Mineralogy and Petrology, 116, 381397.CrossRefGoogle Scholar
Ford, E.E., Černý, P., Jackson, L.L., Sherman, D.M. and Eby, R.K. (1995) Mineralogical and geochemical evolution of micas from miarolitic pegmatites of the anorogenic Pikes Peak batholith, Colorado. Mineralogy and Petrology, 55, 126.CrossRefGoogle Scholar
Förster, H.-J. and Tischendorf, G. (1989) Reconstruction of the volatile characteristic of granitoidic magmas and hydrothermal solutions on the basis of dark micas: the hercynian postkinematic granites and associated high-temperature mineralizations. Chemie der Erde, 49, 720.Google Scholar
Förster, H.-J., Trumbull, R.B. and Gottesmann, B. (1999) Late-collisional granites in the Variscan Erzgebirge, Germany. Journal of Petrology, 40, 16131645.CrossRefGoogle Scholar
Foster, M.D. (1960) Interpretation of the composition of Li-micas. U.S. Geological Survey Professional Paper, 354E, 113147.Google Scholar
Gerdes, A., Wörner, G. and Finger, F. (1998) Late-orogenic magmatism in the Southern Bohemian Massif - geochemical and isotopic constraints on possible sources and magma evolution. Acta Universitatis Carolina Geologica, 42, 4145.Google Scholar
Gerdes, A., Friedl, G., Parrish, R.R. and Finger, F. (2003) High-resolution geochronology of Variscan granite emplacement - the South Bohemian Batholith. Journal of the Czech Geological Society, 48, 5354.Google Scholar
Govindaraju, K. (1994) Compilation of working values and sample description for 383 geostandards. Geostandards Newsletter, 18, 1158.CrossRefGoogle Scholar
Haidinger, W. (1845) Handbuch der bestimmenden Mineralogie. Braumüller & Seidel, Vienna, 625 pp.Google Scholar
Henderson, C.M.B., Martin, J.S. and Mason, R.A. (1989) Compositional relations in Li-micas from S.W. England and France: an ion- and electron-microprobe study. Mineralogical Magazine, 53, 427449.CrossRefGoogle Scholar
Hoffmann, U., Breitkreutz, Ch., Breiter, K., Sergeev, S., Stanek, K. and Tichomirova, M. (2013) Carboniferous-Permian volcanic evolution in Central Europe — U/Pb ages of volcanic rocks in Saxony (Germany) and northern Bohemia (Czech Republic). International Journal of Earth Sciences, 102, 7399.CrossRefGoogle Scholar
Holub, F.V (1997) Ultrapotassic plutonic rocks of the durbachite series in the Bohemian Massif: Petrology, geochemistry and petrogenic interpretation. Journal of Geological Sciences, Economic Geology, Mineralogy, 31, 526.Google Scholar
Holub, F.V., Machart, J. and Manová, M. (1997) The Central Bohemian plutonic complex. Journal of Geological Sciences, Economic Geology, Mineralogy, 31, 27–9.Google Scholar
Icenhower, J. and London, P. (1995) An experimental study of element partitioning among biotite, muscovite, and coexisting peraluminous silicic melt at 200 MPa (H2O). American Mineralogist, 80, 12291251.CrossRefGoogle Scholar
Icenhower, J. and London, P. (1997) Partitioning of fluorine and chlorine between biotite and granitic melt: Experimental calibration at 200 MPa H2O. Contributions to Mineralogy and Petrology, 127, 1729.CrossRefGoogle Scholar
Janoušek, V and Skála, R. (2011) Bohemian geological enigmas: Variscan high-pressure granulites, ultrapotassic magmatites and tektites. Goldschmidt 2011 post-conference field trip August 20-22, 2011, Guidebook. Prague, 96 pp.Google Scholar
Janoušek, V., Bowes, D.R., Rogers, G., Farrow, C.M. and Jelínek, E. (2000) Modelling diverse processes in the petrogenesis of a composite batholith: the Central Bohemian Pluton, Central European Hercynides. Journal of Petrology, 41, 511543.CrossRefGoogle Scholar
Johan, Z., Strnad, L. and Johan, V (2012) Evolution of the Cínovec (Zinnwald) granite cupola, Czech Republic: composition of feldspars and micas, a clue to the origin of W, Sn mineralization. The Canadian Mineralogist, 50, 11311148.CrossRefGoogle Scholar
Kusiak, M.A., Dunkley, D.J., Suzuki, K., Kachlík, V., Kedzior, A., Lekki, J. and Opluštil, S. (2010) Chemical (non-isotopic) and isotopic dating of Phanerozoic zircon — A case study of durbachite from the Treble pluton, Bohemian Massif. Gondwana Research, 17, 153161.CrossRefGoogle Scholar
Lexa, O., Schulmann, K., Janoušek, V., Štípská, P., Guy, A. and Racek, M. (2011) Heat sources and trigger mechanisms of exhumation of HP granulites in Variscan orogenic root. Journal of Metamorphic Geology, 29, 79102.CrossRefGoogle Scholar
Li, J., Huang, X-L., He, P-L., Li, W-X., Yu, Y and Chen, L. (2015) In situ analyses of micas in the Yashan granite, South China: Constraints on magmatic and hydrothermal evolutions of W and Ta-Nb bearing granites. Ore Geology Reviews, 65, 793810.CrossRefGoogle Scholar
Mottana, A., Sassi, F.P., Thompson Jr, J.B. and Guggenheim, S. (editors) (2002) Micas: Crystal Chemistry & Metamorphic Petrology. Reviews in Mineralogy & Geochemistry, 46. Mineralogical Society of America and the Geochemical Society, Washington, DC, 499 pp.Google Scholar
Petrík, I., Čík, Š., Miglierini, M., Vaculovič, T., Dianiška, I. and Ozdín, D. (2014) Alpine oxidation of lithium micas in Permian S-type granites (Gemeric unit, Western Carpathians, Slovakia). Mineralogical Magazine, 78, 507533.CrossRefGoogle Scholar
Rieder, M. (1970) Chemical composition and physical properties of lithium-iron micas from the Krušné hory Mts. (Erzgebirge). Contribution to Mineralogy and Petrology, 27, 131158.CrossRefGoogle Scholar
Rieder, M. (2001) Mineral nomenclature in the mica group: the promise and the reality. European Journal of Mineralogy, 13, 10091012.CrossRefGoogle Scholar
Rieder, M., Hybler, J., Smrčok, L. and Weiss, Z. (1996) Refinement of the crystal structure of zinnwaldite 2M1. European Journal of Mineralogy, 8, 12411248.CrossRefGoogle Scholar
Rieder, M., Cavazzini, G., Dyakonov, Y.S., Frank-Kamenetskii, V.A., Gottardi, G., Guggenheim, S., Koval, P.V., Muller, G., Neiva, A.M.R., Radoslovich, E.W. et al. (1999) Nomenclature of micas. Mineralogical Magazine, 73, 267279.CrossRefGoogle Scholar
Roda, E., Pesquera, A. and Velasco, F. (1995) Micas of the muscovite-lepidolite series from the Fregenada pegmatites (Salamanca, Spain). Mineralogy and Petrology, 55, 145157.CrossRefGoogle Scholar
Roda-Robles, E., Pesquera, A., Gil-Grespo, P., Torres-Ruiz, J. (2012) From granite to highly evolved pegmatite: A case study of the Pinilla de Fermoselle granite-pegmatite system (Zamora, Spain). Lithos, 153, 192207.CrossRefGoogle Scholar
Rudnick, R.L. and Fountain, D.M. (1995) Nature and composition of the continental crust: A lower crustal perspective. Reviews of Geophysics, 33, 267309.CrossRefGoogle Scholar
Shihua, S. and Jie, Y (1999) Fe-Li micas: a new approach to the substitution series. Mineralogical Magazine, 63, 933945.CrossRefGoogle Scholar
Siebel, W., Breiter, K., Wendt, I., Höhndorf, A., Henjes-Kunst, F. and René, M. (1999) Petrogenesis of contrasting granitoid plutons in western Bohemia (Czech Republic). Mineralogy and Petrology, 65, 207235.CrossRefGoogle Scholar
Siebel, W., Shang, C.K., Reitter, E., Rohrmüller, J. and Breiter, K. (2008) Two distinctive granite suites in the south-western Bohemian Massif and their record of emplacement: constraints from zircon 207Pb/206Pb chronology and geochemistry. Journal of Petrology, 49, 18531872.CrossRefGoogle Scholar
Speer, J.A. (1984) Micas in igneous rocks. Pp. 299-356 in: Mica (S.W. Bailey, editor). Reviews in Mineralogy, 13. Mineralogical Society of America, Washington, DC.CrossRefGoogle Scholar
Štemprok, M. and Šulcek, Z. (1969) Geochemical profile through an ore-bearing lithium granite. Economic Geology, 64, 392404.CrossRefGoogle Scholar
Stone, M., Exley, C.S. and George, M.C. (1988) Composition of trioctahedral micas in the Cornubian batholith. Mineralogical Magazine, 52, 175192.CrossRefGoogle Scholar
Stone, M., Klomínský, J. and Rajpoot, G.S. (1997) Composition of trioctahedral micas in the Karlovy Vary pluton, Czech Republic and a comparison with those in the Cornubian batholith, SW England. Mineralogical Magazine, 61, 791807.CrossRefGoogle Scholar
Thiergärtner, H. (2010) Can the Li2O content of mica really be calculated from its main chemical components? Zeitschrift fur geologische Wissenschaften, 38, 195205.Google Scholar
Tichomirowa, M. and Leonhardt, D. (2010) New age determinations (Pb/Pb zircon evaporation, Rb/Sr) on the granites from Aue-Schwarzenberg and Eibenstock, Western Erzgebirge, Germany. Zeitschrift für geolo-:,'.»*. In /!.»“».'.*. Imm n. .'N. “” I 2 ‘Google Scholar
Tindle, A.G. and Webb, P.C. (1990) Estimation of lithian contents in trioctahedral micas using microprobe data: application to micas from granitic rocks. European Journal of Mineralogy, 2, 595610.CrossRefGoogle Scholar
Tischendorf, G., Gottesmann, B., Förster, H.-J. and Trumbull, R.B. (1997) On Li-bearing micas: estimating Li from electron microprobe analyses and en improved diagram for graphical representation. Mineralogical Magazine, 61, 809834.CrossRefGoogle Scholar
Tischendorf, G., Förster, H-J. and Gottesmann, B. (1999) The correlation between lithium and magnesium in trioctahedral micas: Improved equations for Li2O estimation from MgO data. Mineralogical Magazine, 63, 5774.CrossRefGoogle Scholar
Tischendorf, G., Förster, H-J. and Gottesmann, B. (2001) Minor and trace-element composition of trioctahedral micas: a review. Mineralogical Magazine, 65, 249276.CrossRefGoogle Scholar
Tischendorf, G., Rieder, M., Förster, H-J., Gottesmann, B. and Guidotti, C.V. (2004) A new graphical presentation of potassium micas. Mineralogical Magazine, 68, 649667.CrossRefGoogle Scholar
Van Lichtervelde, M., Grégoire, M., Linnen, R.L., Béziat, D. and Salvi, S. (2008) Trace element geochemistry by laser ablation ICP-MS of micas associated with Ta mineralization in the Tanco pegmatite, Manitoba, Canada. Contribution to Mineralogy and Petrology, 155, 791806.CrossRefGoogle Scholar
Waldmann, L. (1950) Geologische Spezialkarte der Republik Österreich 1:75000. Blatt Litschau-Gmünd. Geologische Bundesanstalt, Wien.Google Scholar
Wang, R.C., Hu, H., Zhang, A.C., Fontan, F., de Parseval, Ph. and Jiang, S.Y (2007) Cs-dominant polylithionite in the Koktokay#3 pegmatite, Altai, NW China: in situ micro-characterization and implication for the storage of radioactive cesium. Contribution to Mineralogy and Petrology, 153, 355367.CrossRefGoogle Scholar
Wise, M.A. (1995) Trace element chemistry of lithium-rich micas from rare-element granitic pegmatites. Mineralogy and Petrology, 55, 203215.CrossRefGoogle Scholar
Xie, L., Wang, R.C., Groat, L.A., Zhu, J.C., Huang, F.F. and Cempírek, J. (2015) A combined EMPA and LA-ICP-MS study of Li-bearing mica and Sn-Ti oxide minerals from the Qiguling topaz rhyolite (Qitianling District, China): The role of fluorine in origin of tin mineralization. Ore Geology Reviews, 65, 779792.CrossRefGoogle Scholar
Yang, Y., Ni, Y., Wang, L. and Wang, W (1988) Nanpingite: A new cesium mineral. Acta Petrologica et Mineralogica (China), 7, 4958.Google Scholar
Zack, T., Kronz, A., Foley, S.F. and Rivers, T (2002) Trace element abundance in rutiles from eclogites and associated garnet mica schist. Chemical Geology, 184, 97122.CrossRefGoogle Scholar
Supplementary material: File

Breiter et al. supplementary material

Supplementary file 1

Download Breiter et al. supplementary material(File)
File 157.2 KB
Supplementary material: File

Breiter et al. supplementary material

Supplementary file 1

Download Breiter et al. supplementary material(File)
File 405 KB
Supplementary material: File

Breiter et al. supplementary material

Supplementary file 1

Download Breiter et al. supplementary material(File)
File 273.9 KB