Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-22T08:44:55.342Z Has data issue: false hasContentIssue false

Visualization of the Coalescence of Bismuth Nanoparticles

Published online by Cambridge University Press:  17 March 2014

Kai-Yang Niu
Affiliation:
Lawrence Berkeley National Laboratory, Materials Sciences Division, Berkeley, CA 94720, USA
Hong-Gang Liao
Affiliation:
Lawrence Berkeley National Laboratory, Materials Sciences Division, Berkeley, CA 94720, USA
Haimei Zheng*
Affiliation:
Lawrence Berkeley National Laboratory, Materials Sciences Division, Berkeley, CA 94720, USA Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, USA
*
*Corresponding author. [email protected]
Get access

Abstract

Coalescence is a significant pathway for the growth of nanostructures. Here we studied the coalescence of Bi nanoparticles in situ by liquid cell transmission electron microscopy (TEM). The growth of Bi nanoparticles was initiated from a bismuth neodecanoate precursor solution by electron beam irradiation inside a liquid cell under the TEM. A significant number of coalescence events occurred from the as-grown Bi nanodots. Both symmetric coalescence of two equal-sized nanoparticles and asymmetric coalescence of two or more unequal-sized nanoparticles were analyzed along their growth trajectories. Our observation suggests that two mass transport mechanisms, i.e., surface diffusion and grain boundary diffusion, are responsible for the shape evolution of nanoparticles after a coalescence event.

Type
In Situ Special Section
Copyright
© Microscopy Society of America 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bonevich, J.E. & Marks, L.D. (1992). The sintering behavior of ultrafine alumina particles. J Mater Res 7, 14891500.Google Scholar
Dai, Z.R., Sun, S.H. & Wang, Z.L. (2001). Phase transformation, coalescence, and twinning of monodisperse FePt nanocrystals. Nano Lett 1, 443447.Google Scholar
Dong, H., Moon, K.-S. & Wong, C.P. (2004). Molecular dynamics study on the coalescence of Cu nanoparticles and their deposition on the Cu substrate. J Elec Mater 33, 13261330.Google Scholar
Dong, A., Tang, R. & Buhro, W.E. (2007a). Solution-based growth and structural characterization of homo- and heterobranched semiconductor nanowires. J Am Chem Soc 129, 1225412262.CrossRefGoogle ScholarPubMed
Dong, A., Wang, F., Daulton, T.L. & Buhro, W.E. (2007b). Solution-liquid-solid (SLS) growth of ZnSe-ZnTe quantum wires having axial heterojunctions. Nano Lett 7, 13081313.Google Scholar
Dong, A., Yu, H., Wang, F. & Buhro, W.E. (2008). Colloidal GaAs quantum wires: Solution-liquid-solid synthesis and quantum-confinement studies. J Am Cheml Soc 130, 59545961.Google Scholar
Eggers, J. (1998). Coalescence of spheres by surface diffusion. Physl Rev Lett 80, 26342637.Google Scholar
Eustathopoulos, N. (1983). Energetics of solid/liquid interfaces of metals and alloys. Int Metals Rev 28, 189210.Google Scholar
Fanfair, D.D. & Korgel, B.A. (2005). Bismuth nanocrystal-seeded III-V semiconductor nanowire synthesis. Cryst Growth Des 5, 19711976.Google Scholar
Grogan, J.M., Rotkina, L. & Bau, H.H. (2011). In situ liquid-cell electron microscopy of colloid aggregation and growth dynamics. Phys Rev E, 83, 061405.Google Scholar
Harada, M. & Kamigaito, Y. (2011). Nucleation and aggregative growth process of platinum nanoparticles studied by in situ quick XAFS spectroscopy. Langmuir 28, 24152428.Google Scholar
Hawa, T. & Zachariah, M.R. (2004). Molecular dynamics study of particle–particle collisions between hydrogen-passivated silicon nanoparticles. Phys Rev B 69, 035417.CrossRefGoogle Scholar
Hawa, T. & Zachariah, M.R. (2006). Coalescence kinetics of unequal sized nanoparticles. J Aerosol Sci 37, 115.Google Scholar
Ingham, B., Lim, T.H., Dotzler, C.J., Henning, A., Toney, M.F. & Tilley, R.D. (2011). How nanoparticles coalesce: an in situ study of Au nanoparticle aggregation and grain growth. Chem Mater 23, 33123317.CrossRefGoogle Scholar
Kuczynski, G.C. (1949). Study of the sintering of glass. J Appl Phys 20, 11601163.Google Scholar
Lewis, L.J., Jensen, P. & Barrat, J.L. (1997). Melting, freezing, and coalescence of gold nanoclusters. Phys Rev B 56, 22482257.CrossRefGoogle Scholar
Li, D., Nielsen, M.H., Lee, J.R.I., Frandsen, C., Banfield, J.F. & De Yoreo, J.J. (2012). Direction-specific interactions control crystal growth by oriented attachment. Science 336, 10141018.Google Scholar
Liao, H.-G., Cui, L., Whitelam, S. & Zheng, H. (2012). Real-time imaging of Pt3Fe nanorod growth in solution. Science 336, 10111014.Google Scholar
Liao, H.-G., Niu, K. & Zheng, H. (2013). Observation of growth of metal nanoparticles. Chem Commun 49, 1172011727.Google Scholar
Lim, T.H., McCarthy, D., Hendy, S.C., Stevens, K.J., Brown, S.A. & Tilley, R.D. (2009). Real-time TEM and kinetic Monte Carlo studies of the coalescence of decahedral gold nanoparticles. ACS Nano 3, 38093813.CrossRefGoogle ScholarPubMed
Liu, L., Li, X., Wu, X., Chen, X. & Chu, P.K. (2011). Growth of tin oxide nanorods induced by nanocube-oriented coalescence mechanism. Appl Phys Lett 98, 133102133103.CrossRefGoogle Scholar
Liu, Y.Z., Lin, X.M., Sun, Y.G. & Rajh, T. (2013). In situ visualization of self-assembly of charged gold nanoparticles. J Am Chem Soc 135, 37643767.Google Scholar
McCarthy, D.N. & Brown, S.A. (2009). Evolution of neck radius and relaxation of coalescing nanoparticles. Phys Rev B, 80, 064107.CrossRefGoogle Scholar
Mullins, W.W. (1957). Theory of the thermal grooving. J Appl Phys 28, 333339.Google Scholar
Mullins, W.W. (1959). Flattening of a nearly plane solid surface due to capillarity. J Appl Phys 30, 7783.CrossRefGoogle Scholar
Nichols, F.A. & Mullins, W.W. (1965). Morphological changes of a surface of revolution due to capillarity—induced surface diffusion. J Appl Phys 36, 18261835.Google Scholar
Niu, K., Liao, H. & Zheng, H. (2012). Revealing dynamic processes of materials in liquids using liquid cell transmission electron microscopy. J Vis Exp 70, e50122.Google Scholar
Niu, K.-Y., Park, J., Zheng, H. & Alivisatos, A.P. (2013). Revealing bismuth oxide hollow nanoparticle formation by Kirkendall effect. Nano Lett 13, 57155719.Google Scholar
Palasantzas, G., Vystavel, T., Koch, S.A. & De Hosson, J.T.M. (2006). Coalescence aspects of cobalt nanoparticles during in situ high-temperature annealing. J Appl Phys, 99, 024307.Google Scholar
Richards, V.N., Rath, N.P. & Buhro, W.E. (2010a). Pathway from a molecular precursor to silver nanoparticles: the prominent role of aggregative growth. Chem Mater 22, 35563567.Google Scholar
Richards, V.N., Shields, S.P. & Buhro, W.E. (2010b). Nucleation control in the aggregative growth of bismuth nanocrystals. Chem Mater 23, 137144.Google Scholar
Simonsen, S.B., Chorkendorff, I., Dahl, S., Skoglundh, M., Sehested, J. & Helveg, S. (2010). Direct observations of oxygen-induced platinum nanoparticle ripening studied by in situ TEM. J Am Chem Soc 132, 79687975.Google Scholar
Ustarroz, J., Hammons, J.A., Altantzis, T., Hubin, A., Bals, S. & Terryn, H. (2013). A generalized electrochemical aggregative growth mechanism. J Am Chem Soc 135, 1155011561.CrossRefGoogle ScholarPubMed
Vaughn, D.D., Hentz, O.D., Chen, S., Wang, D. & Schaak, R.E. (2012). Formation of SnS nanoflowers for lithium ion batteries. Chem Commun 48, 56085610.Google Scholar
Vaughn, D.D., In, S.-I. & Schaak, R.E. (2011). A precursor-limited nanoparticle coalescence pathway for tuning the thickness of laterally-uniform colloidal nanosheets: the case of SnSe. ACS Nano 5, 88528860.CrossRefGoogle ScholarPubMed
Wang, F., Tang, R., Yu, H., Gibbons, P.C. & Buhro, W.E. (2008). Size- and shape-controlled synthesis of bismuth nanoparticles. Chem Mater 20, 36563662.CrossRefGoogle Scholar
Yuk, J.M., Park, J., Ercius, P., Kim, K., Hellebusch, D.J., Crommie, M.F., Lee, J.Y., Zettl, A. & Alivisatos, A.P. (2012). High-resolution EM of colloidal nanocrystal growth using graphene liquid cells. Science 336, 6164.Google Scholar
Zachariah, M.R. & Carrier, M.J. (1999). Molecular dynamics computation of gas-phase nanoparticle sintering: A comparison with phenomenological models. J Aerosol Sci 30, 11391151.CrossRefGoogle Scholar
Zhang, W. & Gladwell, I. (1998). Sintering of two particles by surface and grain boundary diffusion—a three-dimensional model and a numerical study. Comp Mater Sci 12, 84104.Google Scholar
Zhang, W. & Schneibel, J.H. (1995). The sintering of two particles by surface and grain boundary diffusion—a two-dimensional numerical study. Acta Metallurgica et Materialia 43, 43774386.CrossRefGoogle Scholar
Zheng, H., Smith, R.K., Jun, Y.-w., Kisielowski, C., Dahmen, U. & Alivisatos, A.P. (2009). Observation of single colloidal platinum nanocrystal growth trajectories. Science 324, 13091312.Google Scholar
Zhu, H.L. & Averback, R.S. (1996). Sintering processes of two nanoparticles: A study by molecular-dynamics. Philos Mag Lett 73, 2733.CrossRefGoogle Scholar

Niu Supplementary Material

Movie 1

Download Niu Supplementary Material(Video)
Video 15 MB

Niu Supplementary Material

Movie 2

Download Niu Supplementary Material(Video)
Video 11.9 MB
Supplementary material: File

Niu Supplementary Material

Supplementary Material

Download Niu Supplementary Material(File)
File 1.5 MB