Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-27T01:38:49.469Z Has data issue: false hasContentIssue false

Quantitative Prediction of Properties of Organic Molecules from ELNES via Artificial Neural Network

Published online by Cambridge University Press:  30 July 2020

Kakeru Kikumasa
Affiliation:
The University of Tokyo, Meguro, Tokyo, Japan
Shin Kiyohara
Affiliation:
Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
Kiyou Shibata
Affiliation:
The University of Tokyo, Meguro, Tokyo, Japan
Teruyasu Mizoguchi
Affiliation:
The University of Tokyo, Meguro, Tokyo, Japan

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Advances in Modeling, Simulation, and Artificial Intelligence in Microscopy and Microanalysis for Physical and Biological Systems
Copyright
Copyright © Microscopy Society of America 2020

References

Kiyohara, S. et al. , J. Phys. Mater., 2 (2019) 02400310.1088/2515-7639/ab0b68CrossRefGoogle Scholar
Ruddigkeit, L. et al. , J. Chem. Inf. Model., 52 (2012), 2864-287510.1021/ci300415dCrossRefGoogle Scholar
Ramakrishnan, R. et al. , Scientific Data, 1 (2014), 140022.10.1038/sdata.2014.22CrossRefGoogle Scholar
Segall, M. D. et al. , J. Phys. Condens. Matter., 24 (2002), 2717-274410.1088/0953-8984/14/11/301CrossRefGoogle Scholar