Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-22T08:17:51.817Z Has data issue: false hasContentIssue false

Nucleation Dynamics of Water Nanodroplets

Published online by Cambridge University Press:  26 March 2014

Dipanjan Bhattacharya
Affiliation:
Center for BioImaging Sciences, Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore Singapore-MIT Alliance for Research and Technology, 3 Science Drive 2, Singapore 117543, Singapore
Michel Bosman
Affiliation:
Institute of Materials Research and Engineering, A*Star (Agency for Science and Technology), 3 Research Link, Singapore 117602, Singapore
Venkata R.S.S. Mokkapati
Affiliation:
Nanotechnology Research and Application Center, Sabanci University, Orhanlı, Tuzla, İstanbul 34956, Turkey
Fong Yew Leong
Affiliation:
Institute of High Performance Computing, A*Star, 1 Fusionopolis Way, Singapore 138632, Singapore
Utkur Mirsaidov*
Affiliation:
Center for BioImaging Sciences, Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore Graphene Research Center and Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117551, Singapore Nanocore, National University of Singapore, 4 Engineering Drive 3, Singapore 117576, Singapore
*
*Corresponding author.[email protected]
Get access

Abstract

The origin of the condensation of water begins at the nanoscale, a length-scale that is challenging to probe for liquids. In this work we directly image heterogeneous nucleation of water nanodroplets by in situ transmission electron microscopy. Using gold nanoparticles bound to a flat surface as heterogeneous nucleation sites, we observe nucleation and growth of water nanodroplets. The growth of nanodroplet radii follows the power law: R(t)~(tt0)β, where β~0.2−0.3.

Type
In Situ Special Section
Copyright
© Microscopy Society of America 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barkay, Z. (2010a). Dynamic study of nanodroplet nucleation and growth on self-supported nanothick liquid films. Langmuir 26(23), 1858118584.CrossRefGoogle ScholarPubMed
Barkay, Z. (2010b). Wettability study using transmitted electrons in environmental scanning electron microscope. Applied Physics Letters 96(18), 183103183109.Google Scholar
Daniel, S., Chaudhury, M.K. & Chen, J.C. (2001). Fast drop movements resulting from the phase change on a gradient surface. Science 291(5504), 633636.CrossRefGoogle ScholarPubMed
de Jonge, N., Peckys, D.B., Kremers, G.J. & Piston, D.W. (2009). Electron microscopy of whole cells in liquid with nanometer resolution. Proc Natl Acad Sci 106(7), 21592164.Google Scholar
de Jonge, N. & Ross, F.M. (2011). Electron microscopy of specimens in liquid. Nat Nano 6(11), 695704.Google Scholar
Evans, J.E., Jungjohann, K.L., Browning, N.D. & Arslan, I. (2011). Controlled growth of nanoparticles from solution with in situ liquid transmission electron microscopy. Nano Lett 11(7), 28092813.Google Scholar
Fisenko, S.P., Shimada, M. & Okuyama, K. (2007). Heterogeneous condensation on nanoparticle. In Nucleation and Atmospheric Aerosols, O’Dowd C.D. & Wagner P.E. (Eds.), pp. 181184. the Netherlands: Springer.Google Scholar
Grogan, J.M., Rotkina, L. & Bau, H.H. (2011). In situ liquid-cell electron microscopy of colloid aggregation and growth dynamics. Phys Rev E 83(6), 061405.Google Scholar
Kashchiev, D. (2000). Work for cluster formation. In Nucleation: Basic Theory with Applications, 957. Oxford: Butterworth-Heinemann.CrossRefGoogle Scholar
Leach, R.N., Stevens, F., Langford, S.C. & Dickinson, J.T. (2006). Dropwise condensation: experiments and simulations of nucleation and growth of water drops in a cooling system. Langmuir 22(21), 88648872.Google Scholar
Liao, H.-G., Cui, L., Whitelam, S. & Zheng, H. (2012). Real-time imaging of Pt3Fe nanorod growth in solution. Science 336(6084), 10111014.CrossRefGoogle ScholarPubMed
Miljkovic, N., Enright, R. & Wang, E.N. (2012). Effect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces. ACS Nano 6(2), 17761785.Google Scholar
Mirsaidov, U., Mokkapati, V.R.S.S., Bhattacharya, D., Andersen, H., Bosman, M., Ozyilmaz, B. & Matsudaira, P. (2013). Scrolling graphene into nanofluidic channels. Lab on a Chip 13(15), 28742878.Google Scholar
Mirsaidov, U., Zheng, H., Bhattacharya, D., Casana, Y. & Matsudaira, P. (2012). Direct observation of stick-slip movements of water nanodroplets induced by an electron beam. Proc Natl Acad Sci 109(19), 71877190.Google Scholar
Muselli, M., Beysens, D. & Milimouk, I. (2006). A comparative study of two large radiative dew water condensers. J Arid Environ 64(1), 5476.CrossRefGoogle Scholar
Narhe, R.D. & Beysens, D.A. (2004). Nucleation and growth on a superhydrophobic grooved surface. Phys Rev Lett 93(7), 076103.CrossRefGoogle ScholarPubMed
Rogers, T.M., Elder, K.R. & Desai, R.C. (1988). Droplet growth and coarsening during heterogeneous vapor condensation. Phys Rev A 38(10), 53035309.Google Scholar
Rykaczewski, K. (2012). Microdroplet growth mechanism during water condensation on superhydrophobic surfaces. Langmuir 28(20), 77207729.CrossRefGoogle Scholar
Rykaczewski, K. & Scott, J.H.J. (2011). Methodology for imaging nano-to-microscale water condensation dynamics on complex nanostructures. ACS Nano 5(7), 59625968.Google Scholar
Rykaczewski, K., Scott, J.H.J., Rajauria, S., Chinn, J., Chinn, A.M. & Jones, W. (2011). Three dimensional aspects of droplet coalescence during dropwise condensation on superhydrophobic surfaces. Soft Matter 7(19), 87498752.Google Scholar
Steyer, A., Guenoun, P., Beysens, D. & Knobler, C.M. (1991). Growth of droplets on a substrate by diffusion and coalescence. Phys Rev A 44(12), 82718277.Google Scholar
Suga, M., Nishiyama, H., Konyuba, Y., Iwamatsu, S., Watanabe, Y., Yoshiura, C., Ueda, T. & Sato, C. (2011). The atmospheric scanning electron microscope with open sample space observes dynamic phenomena in liquid or gas. Ultramicroscopy 111(12), 16501658.Google Scholar
Ucar, I.O. & Erbil, H.Y. (2012). Use of diffusion controlled drop evaporation equations for dropwise condensation during dew formation and effect of neighboring droplets. Colloids Surf A Physicochem Eng Asp 411(0), 6068.CrossRefGoogle Scholar
Varanasi, K.K., Hsu, M., Bhate, N., Yang, W. & Deng, T. (2009). Spatial control in the heterogeneous nucleation of water. Appl Phys Lett 95(9), 094101094103.Google Scholar
White, E.R., Mecklenburg, M., Shevitski, B., Singer, S.B. & Regan, B.C. (2012). Charged nanoparticle dynamics in water induced by scanning transmission electron microscopy. Langmuir 28(8), 36953698.Google Scholar
Williamson, M.J., Tromp, R.M., Vereecken, P.M., Hull, R. & Ross, F.M. (2003). Dynamic microscopy of nanoscale cluster growth at the solid-liquid interface. Nat Mater 2(8), 532536.Google Scholar
Xin, H.L. & Zheng, H. (2012). In situ observation of oscillatory growth of bismuth nanoparticles. Nano Lett 12(3), 14701474.Google Scholar
Yuk, J.M., Park, J., Ercius, P., Kim, K., Hellebusch, D.J., Crommie, M.F., Lee, J.Y., Zettl, A. & Alivisatos, A.P. (2012). High-resolution EM of colloidal nanocrystal growth using graphene liquid cells. Science 336(6077), 6164.Google Scholar
Zheng, H., Claridge, S.A., Minor, A.M., Alivisatos, A.P. & Dahmen, U. (2009a). Nanocrystal diffusion in a liquid thin film observed by in situ transmission electron microscopy. Nano Lett 9(6), 24602465.CrossRefGoogle Scholar
Zheng, H., Smith, R.K., Jun, Y.-W., Kisielowski, C., Dahmen, U. & Alivisatos, A.P. (2009b). Observation of single colloidal platinum nanocrystal growth trajectories. Science 324(5932), 13091312.Google Scholar

Bhattacharya Supplementary Material

Movie 1

Download Bhattacharya Supplementary Material(Video)
Video 14.7 MB