Article contents
Nucleation Dynamics of Water Nanodroplets
Published online by Cambridge University Press: 26 March 2014
Abstract
The origin of the condensation of water begins at the nanoscale, a length-scale that is challenging to probe for liquids. In this work we directly image heterogeneous nucleation of water nanodroplets by in situ transmission electron microscopy. Using gold nanoparticles bound to a flat surface as heterogeneous nucleation sites, we observe nucleation and growth of water nanodroplets. The growth of nanodroplet radii follows the power law: R(t)~(t−t0)β, where β~0.2−0.3.
- Type
- In Situ Special Section
- Information
- Copyright
- © Microscopy Society of America 2014
References
Barkay, Z. (2010a). Dynamic study of nanodroplet nucleation and growth on self-supported nanothick liquid films. Langmuir
26(23), 18581–18584.CrossRefGoogle ScholarPubMed
Barkay, Z. (2010b). Wettability study using transmitted electrons in environmental scanning electron microscope. Applied Physics Letters
96(18), 183103–183109.Google Scholar
Daniel, S., Chaudhury, M.K. & Chen, J.C. (2001). Fast drop movements resulting from the phase change on a gradient surface. Science
291(5504), 633–636.CrossRefGoogle ScholarPubMed
de Jonge, N., Peckys, D.B., Kremers, G.J. & Piston, D.W. (2009). Electron microscopy of whole cells in liquid with nanometer resolution. Proc Natl Acad Sci
106(7), 2159–2164.Google Scholar
de Jonge, N. & Ross, F.M. (2011). Electron microscopy of specimens in liquid. Nat Nano
6(11), 695–704.Google Scholar
Evans, J.E., Jungjohann, K.L., Browning, N.D. & Arslan, I. (2011). Controlled growth of nanoparticles from solution with in situ liquid transmission electron microscopy. Nano Lett
11(7), 2809–2813.Google Scholar
Fisenko, S.P., Shimada, M. & Okuyama, K. (2007). Heterogeneous condensation on nanoparticle. In Nucleation and Atmospheric Aerosols, O’Dowd C.D. & Wagner P.E. (Eds.), pp. 181–184. the Netherlands: Springer.Google Scholar
Grogan, J.M., Rotkina, L. & Bau, H.H. (2011). In situ liquid-cell electron microscopy of colloid aggregation and growth dynamics. Phys Rev E
83(6), 061405.Google Scholar
Kashchiev, D. (2000). Work for cluster formation. In Nucleation: Basic Theory with Applications, 9–57. Oxford: Butterworth-Heinemann.CrossRefGoogle Scholar
Leach, R.N., Stevens, F., Langford, S.C. & Dickinson, J.T. (2006). Dropwise condensation: experiments and simulations of nucleation and growth of water drops in a cooling system. Langmuir
22(21), 8864–8872.Google Scholar
Liao, H.-G., Cui, L., Whitelam, S. & Zheng, H. (2012). Real-time imaging of Pt3Fe nanorod growth in solution. Science
336(6084), 1011–1014.CrossRefGoogle ScholarPubMed
Miljkovic, N., Enright, R. & Wang, E.N. (2012). Effect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces. ACS Nano
6(2), 1776–1785.Google Scholar
Mirsaidov, U., Mokkapati, V.R.S.S., Bhattacharya, D., Andersen, H., Bosman, M., Ozyilmaz, B. & Matsudaira, P. (2013). Scrolling graphene into nanofluidic channels. Lab on a Chip
13(15), 2874–2878.Google Scholar
Mirsaidov, U., Zheng, H., Bhattacharya, D., Casana, Y. & Matsudaira, P. (2012). Direct observation of stick-slip movements of water nanodroplets induced by an electron beam. Proc Natl Acad Sci
109(19), 7187–7190.Google Scholar
Muselli, M., Beysens, D. & Milimouk, I. (2006). A comparative study of two large radiative dew water condensers. J Arid Environ
64(1), 54–76.CrossRefGoogle Scholar
Narhe, R.D. & Beysens, D.A. (2004). Nucleation and growth on a superhydrophobic grooved surface. Phys Rev Lett
93(7), 076103.CrossRefGoogle ScholarPubMed
Rogers, T.M., Elder, K.R. & Desai, R.C. (1988). Droplet growth and coarsening during heterogeneous vapor condensation. Phys Rev A
38(10), 5303–5309.Google Scholar
Rykaczewski, K. (2012). Microdroplet growth mechanism during water condensation on superhydrophobic surfaces. Langmuir
28(20), 7720–7729.CrossRefGoogle Scholar
Rykaczewski, K. & Scott, J.H.J. (2011). Methodology for imaging nano-to-microscale water condensation dynamics on complex nanostructures. ACS Nano
5(7), 5962–5968.Google Scholar
Rykaczewski, K., Scott, J.H.J., Rajauria, S., Chinn, J., Chinn, A.M. & Jones, W. (2011). Three dimensional aspects of droplet coalescence during dropwise condensation on superhydrophobic surfaces. Soft Matter
7(19), 8749–8752.Google Scholar
Steyer, A., Guenoun, P., Beysens, D. & Knobler, C.M. (1991). Growth of droplets on a substrate by diffusion and coalescence. Phys Rev A
44(12), 8271–8277.Google Scholar
Suga, M., Nishiyama, H., Konyuba, Y., Iwamatsu, S., Watanabe, Y., Yoshiura, C., Ueda, T. & Sato, C. (2011). The atmospheric scanning electron microscope with open sample space observes dynamic phenomena in liquid or gas. Ultramicroscopy
111(12), 1650–1658.Google Scholar
Ucar, I.O. & Erbil, H.Y. (2012). Use of diffusion controlled drop evaporation equations for dropwise condensation during dew formation and effect of neighboring droplets. Colloids Surf A Physicochem Eng Asp
411(0), 60–68.CrossRefGoogle Scholar
Varanasi, K.K., Hsu, M., Bhate, N., Yang, W. & Deng, T. (2009). Spatial control in the heterogeneous nucleation of water. Appl Phys Lett
95(9), 094101–094103.Google Scholar
White, E.R., Mecklenburg, M., Shevitski, B., Singer, S.B. & Regan, B.C. (2012). Charged nanoparticle dynamics in water induced by scanning transmission electron microscopy. Langmuir
28(8), 3695–3698.Google Scholar
Williamson, M.J., Tromp, R.M., Vereecken, P.M., Hull, R. & Ross, F.M. (2003). Dynamic microscopy of nanoscale cluster growth at the solid-liquid interface. Nat Mater
2(8), 532–536.Google Scholar
Xin, H.L. & Zheng, H. (2012). In situ observation of oscillatory growth of bismuth nanoparticles. Nano Lett
12(3), 1470–1474.Google Scholar
Yuk, J.M., Park, J., Ercius, P., Kim, K., Hellebusch, D.J., Crommie, M.F., Lee, J.Y., Zettl, A. & Alivisatos, A.P. (2012). High-resolution EM of colloidal nanocrystal growth using graphene liquid cells. Science
336(6077), 61–64.Google Scholar
Zheng, H., Claridge, S.A., Minor, A.M., Alivisatos, A.P. & Dahmen, U. (2009a). Nanocrystal diffusion in a liquid thin film observed by in situ transmission electron microscopy. Nano Lett
9(6), 2460–2465.CrossRefGoogle Scholar
Zheng, H., Smith, R.K., Jun, Y.-W., Kisielowski, C., Dahmen, U. & Alivisatos, A.P. (2009b). Observation of single colloidal platinum nanocrystal growth trajectories. Science
324(5932), 1309–1312.Google Scholar
- 18
- Cited by